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Branch History Recovery After Pipeline
Flush Caused by Misprediction

P

In first processing cycle: Supply a first branch prediction [ 901
history as input to a branch predictor that requires N cycles to
produce an output

In an Nth processing cycle after the first processing cycle, loading a 903
memory unit of data into the first stage of the pipelined processor, f
wherein the memory unit of data includes a branch instruction

i ' ¥ [

R As the memory unit of data
Maintain a history of progresses through the
evaluated branch 907 processing stages from one cycle
outcomes of branch to the next, build an associated
instructions that set of N branch prediction
reached the branch histories, including the first branch
evaluation stage prediction history and N-1 branch
prediction histories used to predict

N-1 subsequently fetched memory
units of data (N=branch prediction
delay)

NO

Misprediction detected?
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Select each one of N recovery histories from the history of evaluated
branch outcomes and the set of branch prediction histories

Compute distance representing how
many memory unit of data boundaries (- 915
exist between the branch instruction and
the branch source of the branch
instruction

!

Select each of N values from evaluated
branch outcomes and set of branch
prediction histories associated with the ( 17
memory unit of data, selection being a
function of parameters (computed
distance, location of branch source
within memory unit of data, ...)

l

913
Supply respective ones of the N selected recovery histories as input f
to the branch predictor when each one of N next memory units of
data are loaded into the prediction start stage of the pipeline

9a
901

FIG. 9b
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EFFICIENT BRANCH PREDICTOR HISTORY
RECOVERY IN PIPELINED COMPUTER
ARCHITECTURES EMPLOYING BRANCH
PREDICTION AND BRANCH DELAY SLOTS
OF VARIABLE SIZE

BACKGROUND

The invention relates to pipelined computer architectures,
and more particularly to recovery of branch predictor history
in pipelined computer architectures employing branch pre-
diction and branch delay slots of variable size.

Programmable computers comprise processing circuitry
and some sort of storage mechanism (“memory”) for storing
data and program instructions. In their simplest form, com-
puters operate on a principle in which an instruction is
fetched from memory and the processor executes (i.e.,
performs) the instruction. Execution of instructions may
involve fetching one or more data operands from memory
and/or register locations, producing some sort of data based
on the fetched data, and then storing the result into a memory
and/or register location.

A key characteristic of programmable processors is the
ability for the processor itself to select which one of a
number of sets of instructions will be executed based on the
present state of one or more conditions. To take a very
simple example, if a particular data item has a value of zero,
the program designer may intend for one set of instructions
to be performed, whereas if the particular data item has a
nonzero value, the program designer may intend for a
different set of instructions to be performed. The tested data
item may have different values at different times during
program execution, so the performance of the program may
change over time.

To enable this type of functionality, instructions are by
default designed to be executed in sequence. Each storage
location in memory is associated with an address (essen-
tially, a number), and instructions that are intended to be
unconditionally executed in sequence are stored in memory
locations having sequentially increasing addresses. The pro-
cessor might, for example start operating by fetching and
then executing the instruction located at memory address 0,
followed by fetching and then executing the instruction
located at memory address 1, and so on.

In order to change the flow of program execution, branch
instructions are introduced. Typically the fetching of a
branch instruction causes the processor to test whatever
condition(s) is specified by the instruction. If the test out-
come is that the condition is not satisfied, then the next
instruction is fetched from the memory location that imme-
diately follows the location at which the branch instruction
is stored. However, if the test outcome is that the condition
is satisfied, then instead of fetching the instruction that
immediately follows the branch instruction, an instruction
fetch is performed from a non-sequential memory address
whose value is in some way specified by the branch instruc-
tion.

Pipelines

Through the years, computer engineers have come up
with many ways of enabling computers to execute more
instructions in less time. Of course, one way is simply to
reduce the amount of time it takes to fetch instructions and
execute them. Another way is to introduce parallelism into
the architecture; that is, to allow different aspects of pro-
cessing to take place concurrently. One type of architecture
that exploits parallelism is a so-called pipelined architecture,
in which each instruction is executed in a sequence of stages.
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As one instruction moves from one stage in the pipeline to
the next, another instruction takes its place. When each of
the stages has an instruction in it, and with the stages
operating in parallel, the amount of time it takes to execute
one instruction is effectively the amount of time it spends in
one of the stages because, when each stage of a pipeline has
a different instruction in it, a new execution result is pro-
duced at the end of the pipeline every time an instruction is
shifted from one stage to the next.

More particularly an instruction pipeline splits up each
instruction into a sequence of dependent steps. Consider an
exemplary pipelined processor consisting of the following
stages:

Stage 1: Instruction fetch (IF1)

Stage 2: Instruction fetch (IF2)

Stage 3: Instruction decode and register fetch (ID1)

Stage 4: Instruction decode and register fetch (ID2)

Stage 5: Execute (EXE)

One consequence of splitting up instruction processing in
this manner is that the effect of an instruction will not been
reflected in the architectural state (i.e., performance of the
instruction is not yet completed) before the next instruction
is fetched. The number of cycles in an unstalled pipeline
between the fetching of the instruction and its execution is
referred to as the pipeline latency.

If the correct execution of an instruction depends on the
result of a previous not yet completed instruction, a pipeline
hazard occurs. Hazards can be avoided in both software (by
properly re-scheduling instructions) and hardware (by stall-
ing or forwarding).

Branches

Program code is rarely linear and thus, as explained
earlier, contains jumps (branches) from one position in the
code (branch source) to another position (branch target).
Also as explained above, branches can be conditional: the
branch is taken when the condition holds, otherwise it is not
taken. The branch target and branch condition can be data
dependent or data independent. These potential dependen-
cies put constraints on the scheduling freedom of branches.

A branch target can only be fetched once it is known (i.e.
the branch has been executed, at which time the branch
condition is resolved and the branch target address com-
puted).

The instructions to be executed following execution of the
branch (i.e., the target instructions) are dependent on the
correct execution of that branch. This means that the fetch-
ing of the target instructions to be executed following the
branch can only reliably start after the branch has been
executed.

FIG. 1a illustrates a code segment that includes a branch
instruction. In this example, instructions (Instr) are num-
bered sequentially. A branch instruction has been placed just
after Instr6. In this document, with respect to branches, the
following notation is used:

“(NT)” means that a branch execution will result in the
branch not being taken (i.e., the next sequentially
occurring instruction following the branch will be
executed)

“(T)—=Instr#” means that the branch condition has been
satisfied so that a branch will be taken, and that the
target is Instr# (where “#” represents an instruction
number)

It can therefore be seen that, in the Example of FIG. 1a,
the illustrated branch instruction has target 101 if the branch
is not taken (NT), and target 103 if the branch is taken (T).
In this example, branch execution results in the branch being



US 9,430,245 B2

3

taken, with the target instruction being Instr11. This means
that the NT target instructions 101 will not be executed.

FIG. 15 is a processing sequence diagram 150 that illus-
trates how the branch instruction of FIG. 1la would be
processed in the exemplary pipelined processor mentioned
above. Each rectangle shows what instruction is contained in
a given stage (IF1, IF2, ID1, ID2, EXE) of the pipeline. Time
proceeds from left to right in the figure, and is denoted in
terms of cycle number.

The example starts in Cycle 0, at which point the contents
of stages EXE, ID2, ID1, 1F2, and IF1 are Instr6, Branch,
Instr7, Instr8, and Instr9 respectively. It will be understood
that instructions Instr7, Instr8, and Instr9 have been fetched
under the assumption that instructions should be fetched
from sequential memory addresses unless an executed
Branch instruction requires a different action.

In Cycle 1, Instr6 is no longer in the pipeline and each of
the remaining instructions has advanced one stage in the
pipeline. Although not shown in the Figure, the next sequen-
tial instruction, Instrl0, has been fetched and loaded into the
first stage of the pipeline (i.e., the IF1 stage). The Branch
instruction has reached the EXE stage of the pipeline and the
contents of stages ID2, ID1, IF2, and IF1 are Instr 7, Instr8,
Instr9, and Instrl0, respectively.

However, as mentioned above, in this example the branch
is to be taken, with the target being Instrll. The pipelined
execution of the taken branch in the EXE stage during Cycle
1 means that the already fetched and partially-processed
instructions contained in the earlier stages of the pipeline
(i.e., stages IF1, IF2, ID1, and ID2) are the NT target
instructions 101, and these should not be allowed to change
the state of the computer. For this reason, the exemplary
pipelined processor is configured not to execute (and thereby
not to change the state of the processor) when each of these
already fetched instructions reaches the EXE stage of the
pipeline. This type of non-execution is called an “idle
cycle”. In the example of FIG. 15, it can be seen that the
branch instruction in cycle 1 causes the next four cycles to
be idle cycles in the EXE stage, with the next instruction to
be executed (Instr 11) not reaching the EXE stage until
Cycle 6.

This means that 4 cycles of processor time are essentially
wasted, which is an undesirable effect. There are two com-
monly used ways to prevent the functional units of the
processor from becoming idle due to the pipeline having to
wait for the execution of the branch: branch delay slots and
branch prediction. These are discussed in the following:
Branch Delay Slots

One way of reducing the number of idle cycles associated
with a branch taken condition in a pipelined processor is to
position the branch instruction within the set of instructions
such that the sequentially next instructions immediately
following branch instruction are instructions that need to be
executed regardless of whether the outcome of branch
execution is “taken” or “not taken”. This technique is
illustrated in FIG. 2. Three similar program segments are
shown: “Original program” 250; “Branch with 4 branch
delay slots filled” 260; and “Branch with 2 of 4 branch delay
slots filled” 270. For each of these, it is assumed that the
program is executed by a S-stage pipelined processor as
discussed earlier. For each of the examples, instructions
Instr6 through Instrl0 are the target instructions if the branch
is not taken 201, and the instructions starting with Instr11 are
the target instructions if the branch is taken 203.

The Original program 250 is very much like the one
shown in FIG. 1a: the illustrated portion begins with five
instructions (Instrl, . . . , Instr5) followed by a conditional
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branch instruction. Following the conditional branch
instruction, another seven instructions are depicted
(Instr6, . . ., Instrl2). In this example, the condition tested
by the branch instruction is satisfied, so the branch will be
taken, with the target starting at Instrll (i.e., instructions
Instr6 through Instrl0 are not to be executed). When this
program segment is executed in the pipelined processor, the
effect is as shown in FIG. 15: there will be four idle cycles
before the target instruction, Instrll, is executed.

It will be observed that if the compiler were to advance
the placement of the branch by 4 instructions, as depicted in
the example called “Branch with 4 branch delay slots filled”
260, the pipeline latency would be completely hidden for
this branch. This is because when the branch instruction is
in the EXE stage of the pipeline, the remaining four stages
of the pipeline will be working on instructions Instr2
through Instr5 which, according to the Original program
250, are required to be executed regardless of the outcome
of the branch.

When this technique is used, the instruction positions that
fill the pipeline stages when the branch instruction is in the
EXE stage of the pipeline are called “branch delay slots”.
This technique of repositioning the branch instruction to an
earlier position within the program code separates the loca-
tion that the branch instruction occupies in the program code
from the branch source (i.e., the position in the code from
which execution jumps to another location based on the
outcome of the branch instruction). That is, the last branch
delay slot is now the branch source.

Thus, branch delay slots are scheduling slots for instruc-
tions representing the pipeline latency of their associated
branch. The number of branch delay slots is therefore
conventionally fixed and equal to roughly the pipeline depth.
The branch delay slots are positioned directly after the
branch instruction and are always executed, irrespective of
the outcome of the branch instruction.

The branch delay slot strategy is not perfect, however,
because branches can only be advanced up to the slot
immediately following the last instruction that determines
the branch behavior. If, in the Original program 250 shown
in FIG. 2, execution of the instruction “Instr3” determines
the branch behavior (i.e., the state that will be tested in the
branch condition), the branch cannot be advanced any earlier
than “Instr3” because it would be evaluating the state of a
condition that had not yet been determined. In this case, only
instructions “Instr4” and “Instr5” can be used to fill the
branch delay slots, leaving two unfilled branch delay slots.
The unfilled branch delay slots will contain so-called NOPs
(“No Operation” instructions—instructions that do not
change the state of the computer). This is illustrated in the
program segment called “Branch with 2 of 4 branch delay
slots filled” 270. Every NOP will lead to an idle functional
unit and thus to performance loss.

Branch Prediction

Another way to mitigate the performance loss due to
pipeline latency when a branch is performed is to predict the
outcome of a branch in advance of the branch’s actual time
of execution. Ideally, for the exemplary pipelined processor,
the target of a branch would be predicted when the branch
source is in the IF1 stage. This would allow the branch target
to be fetched during the next cycle, and no performance loss
would occur.

The prediction of branches is done by a specialized unit:
the branch prediction unit (BPU). A BPU contains memories
to keep track of the branch information that becomes avail-
able once a branch has been executed. When a branch is
fetched, the BPU’s internal algorithms predict the branch
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information (what the target instruction is, whether the
branch will be taken (i.e., “branch direction”, etc.) based on
historical and/or contextual information with respect to this
branch. Branch prediction techniques are described in, for
example, Scott McFarling, “Combining Branch Predictors”,
WRL Technical Note TN-36, June 1993, pp. 1-25, Digital
Western Research Laboratory, Palo Alto, Calif., USA.

Having predicted the target and direction of the branch in
1F1, the predicted target is fetched in the very next cycle, so
that there need not be any idle cycles regardless of branch
outcome if the prediction is correct. FIG. 3 is a processing
sequence diagram 300 that illustrates the performance
improvement that can be achieved when branch target and
direction can be correctly predicted. Using the same exem-
plary code segment shown as “Original program” in FIG. 2
and an exemplary 5-stage pipelined processor with branch
prediction, the processing sequence diagram 300 shows the
pipeline in Cycle 1, at which point instructions Instr2, Instr3,
instr4 and Instr5 are in pipeline stages EXE, 1D2, ID1, and
1F2, respectively. Further, the branch instruction has just
been loaded into pipeline stage IF1.

In this example, the prediction made in the IF1 stage is
that the branch will be “taken”, and the target is Instrll
(denoted in the figure as “T—Instrl1”). Accordingly, in
Cycle 2, the predicted target instruction (Instrll) is fetched
and loaded into the IF1 stage when the instructions in each
of the other stages advance one stage in the pipeline. Since
there are no other branch instructions in this example,
instructions are fetched from sequential memory locations in
each of cycles 3, 4, 5, and 6.

The actual evaluation of the branch instruction takes place
when the branch instruction reaches the EXE stage in Cycle
5. Assuming that the prediction was correct (i.e., that the
branch is taken with Instrll being the target), the target
instruction reaches the EXE stage in the very next cycle
(Cycle 6). In this manner, the need for idle cycles has been
avoided.

It is noted that technology has not yet advanced to the
point at which it is always possible to make perfect branch
predictions. For this reason, pipelined architectures continue
to suffer from idle cycles even when branch prediction
technology is employed.

The inventors have determined that each of the conven-
tional techniques for dealing with idle cycles that result from
execution of conditional branch instructions in a pipelined
processor falls short in a number of aspects. In response to
their recognizing the need for improved technology for
avoiding the occurrence of idle cycles, the inventors have
developed improved pipelined processor technology that
employs, in combination, branch prediction and branch
delay slots, the number of which (i.e., “size”) can vary from
one branch to the next. This technology is fully described in
copending U.S. application Ser. No. 14/167,973 by Erik
Rijshouwer and Ricky Nas entitled “Efficient Use of Branch
Delay Slots and Branch Prediction in Pipelined Computer
Architectures” and filed on Jan. 29, 2014.

One aspect of that technology relates to the inventors’
recognition that conventional branch prediction technology
is deficient because it has the BPU’s internal algorithms
predicting the branch information (what the target instruc-
tion is, whether the branch will be taken (i.e., “branch
direction”, etc.)) based on historical and/or contextual infor-
mation (e.g., branch history, instruction address, etc.) with
respect to a branch when the branch instruction reaches a
particular one of the stages (e.g., in the example of FIG. 3,
branch predictions are made by the first stage, i.e., the IF1
stage, but in other embodiments predictions can be made in
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any of the other stages, such as in the second stage, IF2).
This strategy is fine when branch prediction is used alone,
but when combined with branch delay slots, there may be
more instructions that will be executed following the branch
instructions regardless of branch outcome (i.e., instructions
filling the branch instructions’ associated branch delay
slots), and these additional instructions can generate more
state information that can be used to make predictions more
accurate.

When one adds to this mix the aspect in which the number
of'branch delay slots following the branch can vary from one
branch instruction to the next, the situation is made even
more complicated at least because the branch history and
instruction address information that is at least partly used by
the predictor can be in any of the pipeline stages at any given
moment. The inventors have nonetheless devised technol-
ogy that is capable of making use of this additional infor-
mation. An aspect of this technology involves making a
branch prediction from the information available when a last
branch delay slot instruction reaches a particular one of the
pipeline stages, hereinafter referred to as the “prediction
start stage”.

Although the inventors’ strategy described in the afore-
mentioned copending application yields improvements over
conventional technology, the inventors have themselves
further recognized that additional improvements are desired,
particularly when the pipeline includes instructions that
were fetched as a result of an incorrect prediction. Improved
technology that addresses these additional issues is therefore
desired.

SUMMARY

It should be emphasized that the terms “comprises” and
“comprising”, when used in this specification, are taken to
specify the presence of stated features, integers, steps or
components; but the use of these terms does not preclude the
presence or addition of one or more other features, integers,
steps, components or groups thereof. Also, as used herein the
term “exemplary” means serving as one illustration out of
any number of possible illustrations.

It is also emphasized that, as used herein, the term “unit
of data” is intended to be a generic term that defines an
amount of data that is retrieved from one memory storage
location when a read operation is performed. Those of
ordinary skill in the art will understand that the size of a
“unit of data” in one embodiment can be different from the
size of a unit of data in another embodiment.

In accordance with one aspect of the present invention,
the foregoing and other objects are achieved in methods and
apparatuses for controlling a pipelined processor having a
plurality of serially connected processing stages including a
first stage and a branch evaluation stage, wherein one of the
processing stages other than the branch evaluation stage is a
prediction start stage that supplies information for making
branch predictions. The pipelined processor is operatively
coupled to a memory that comprises a plurality of address-
able storage locations, each storage location being for stor-
ing one unit of data. The pipelined processor executes
instructions from an instruction set that includes a branch
instruction and each branch instruction is associated with a
set of branch delay slots whose size can be greater than or
equal to zero and whose size can be different from one
instance of a branch instruction to another. A last one of the
branch delay slots is a branch source of the associated
branch instruction.
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Controlling such a pipelined processor includes, in a first
processing cycle, supplying a first branch prediction history
as input to a branch predictor that requires N cycles to
produce an output. In an N? processing cycle after the first
processing cycle, a memory unit of data is loaded into the
first stage of the pipelined processor, wherein the memory
unit of data includes a branch instruction. As the memory
unit of data progresses through the processing stages from
one cycle to a next, a set of N branch prediction histories is
built that is associated with the memory unit of data, wherein
the N branch prediction histories comprise the first branch
prediction history and N-1 branch prediction histories used
to predict N-1 subsequently fetched memory units of data.

A history of evaluated branch outcomes of branch instruc-
tions that reached the branch evaluation stage is maintained.

Control further comprises detecting, based on a present
evaluation of the branch instruction included in the memory
unit of data and an earlier predicted outcome, whether a
branch misprediction occurred. In response to a detection
that the branch misprediction occurred, values of each one
of N recovery histories are selected from the history of
evaluated branch outcomes and the set of branch prediction
histories. Respective ones of the N selected recovery histo-
ries are supplied as input to the branch predictor when each
one of N next memory units of data are loaded into the
prediction start stage of the pipeline.

In some but not necessarily all embodiments, selecting
values of each one of the N recovery histories from the
history of evaluated branch outcomes and the set of branch
prediction histories comprises computing a distance that
represents how many memory unit of data boundaries exist
between the branch instruction and the branch source of the
branch instruction. Values of the N recovery histories are
selected from the history of evaluated branch outcomes and
the set of branch prediction histories that are associated with
the memory unit of data as a function of a set of parameters,
wherein the set of parameters comprises the computed
distance. In some but not necessarily all such embodiments,
the set of parameters comprises a detection of whether the
branch source of the branch instruction is a last instruction
in the memory unit of data. In some but not necessarily all
such embodiments, the set of parameters comprises a detec-
tion of whether the present evaluation of the branch instruc-
tion is a branch taken outcome.

In some but not necessarily all embodiments, N equals 2.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the invention will be
understood by reading the following detailed description in
conjunction with the drawings in which:

FIG. 1a illustrates a code segment that includes a branch
instruction.

FIG. 15 is a processing sequence diagram that illustrates
how the branch instruction of FIG. 1a would be processed
in an exemplary pipelined processor.

FIG. 2 illustrates code segments to which a branch delay
slot strategy has been applied.

FIG. 3 is a processing sequence diagram that illustrates
the performance improvement that can be achieved when
branch target and direction can be correctly predicted in a
pipelined processor.

FIG. 4 is a processing sequence diagram that illustrates a
first set of exemplary pipelined processor operations, includ-
ing maintenance of a branch prediction history, pred_hist.
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FIG. 5 is a processing sequence diagram that illustrates
the effect of an incorrect prediction on pipelined processor
operations, including its effect on maintenance of the branch
prediction history, pred_hist.

FIGS. 6a and 65 together constitute a processing
sequence diagram that illustrates the effect of an incorrect
prediction on pipelined processor operations when each unit
of data fetched from program memory can contain two
instructions, including the effect of an incorrect prediction
on maintenance of the branch prediction history, pred_hist.

FIGS. 7a, 75, and 7c¢ illustrate the relationship between a
calculated distance and a recovered branch prediction his-
tory in embodiments that are characterized by having a
2-unit of data delay between the unit of data containing a
branch source and the unit of data at which a branch
prediction based on that branch source is made available to
the branch predictor.

FIG. 8 is a diagram showing a relationship between a
plurality of memory units of data and their associated branch
prediction histories.

FIGS. 9a and 95 together are, in one respect, a flow chart
of steps/processes performed by circuitry in accordance with
some but not necessarily all exemplary embodiments of the
invention for the purpose of recovering instructions and
branch histories in a pipelined processor after a pipeline
flush caused by branch misprediction.

FIG. 10 is a block diagram of a pipelined processor in
accordance with embodiments that are consistent with the
invention.

DETAILED DESCRIPTION

The various features of the invention will now be
described with reference to the figures, in which like parts
are identified with the same reference characters.

The various aspects of the invention will now be
described in greater detail in connection with a number of
exemplary embodiments. To facilitate an understanding of
the invention, many aspects of the invention are described in
terms of sequences of actions to be performed by elements
of' a computer system or other hardware capable of execut-
ing programmed instructions. It will be recognized that in
each of the embodiments, the various actions could be
performed by specialized circuits (e.g., analog and/or dis-
crete logic gates interconnected to perform a specialized
function), by one or more processors programmed with a
suitable set of instructions, or by a combination of both. The
term “circuitry configured to” perform one or more
described actions is used herein to refer to any such embodi-
ment (i.e., one or more specialized circuits and/or one or
more programmed processors). Moreover, the invention can
additionally be considered to be embodied entirely within
any form of computer readable carrier, such as solid-state
memory, magnetic disk, or optical disk containing an appro-
priate set of computer instructions that would cause a
processor to carry out the techniques described herein. Thus,
the various aspects of the invention may be embodied in
many different forms, and all such forms are contemplated
to be within the scope of the invention. For each of the
various aspects of the invention, any such form of embodi-
ments as described above may be referred to herein as “logic
configured to” perform a described action, or alternatively as
“logic that” performs a described action.

As mentioned in the Background section, the inventors
have described (i.e., in copending U.S. application Ser. No.
14/167,973) a pipelined computer architecture that employs,
in combination, branch delay slots whose number (“size”
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can vary from one branch instance to the next (including, in
some instances, zero branch delay slots) and branch predic-
tion technology in which predictions are based on informa-
tion obtained from the branch source which, in these
embodiments, is the instruction located in a last branch delay
slot associated with the branch instruction. Also as men-
tioned earlier, these predictions are made available when the
instruction in the last branch delay slot reaches a designated
one of the processor stages called a “predictor stage”.

It was noted that, in such embodiments, the branch history
and instruction address information that are at least partly
used by the branch prediction unit are not in a static location
but are carried along with the instruction as it works its way
through the pipeline. Consequently, that branch history
information and instruction address can be in any of the
pipeline stages at any given cycle. This can lead to less than
desirable arrangements for pipeline control, particularly
when the pipeline includes instructions that were fetched as
a result of an incorrect prediction. The following describes
this in more detail.

Branch prediction algorithms for modern pipelined pro-
cessors make use of a global branch direction history to
exploit correlations among different branches. Making use
of these correlations can improve branch prediction substan-
tially. The various embodiments described herein are suit-
able for use with many different known branch prediction
algorithms. One well-known algorithm making use of a
global branch direction history is “gshare” as described in
the McFarling article cited earlier.

In the exemplary embodiments described in this docu-
ment, it is assumed that the type of branch predictor
employed is capable of producing three different types of
outputs:

1. Whether a given instruction is a branch source (i.e.,
whether the instruction is occupies an end of branch
delay slots position). If the answer is “no”, then no
further output is produced. However, if the answer is
“yes”, then the following output is also produced:

2. The branch direction (“taken” or “not taken”) that will
result from evaluation of the branch instruction asso-
ciated with the branch source. If the prediction outcome
indicates a “taken” branch, then the following output is
also produced:

3. The target address of the taken branch. It will be
understood that, when a branch is predicted to be “not
taken”, the next fetch should always be made from the
next sequential memory unit of data.

Use of this type of branch predictor is not an essential
aspect of the invention; the various aspects of described
embodiments are also applicable to embodiments in which,
for example, the predictor does not need to predict whether
to make branch direction and target address predictions.
Whether to make the prediction can be indicated by other
sources.

However, when branch predictors of the type described
above are employed, it will be understood that mispredic-
tions can occur not only with respect to branch direction and
target address, but also with respect to whether an instruc-
tion is a branch source (i.e., whether a branch prediction
should be made). Such prediction failures can be in either of
two ways:

the branch predictor may fail to predict that a location in
the unit of data marks the end of the branch delay slots
of a branch instruction when it really is, in which case
no branch direction or target address will be pro-
duced—instruction fetching will continue from the
next sequential memory address.
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the branch predictor may incorrectly predict that a loca-
tion in the unit of data does mark the end of the branch
delay slots of a branch instruction when it in fact does
not, in which case branch direction and possibly also
target address will be predicted when correct operation
requires that the next instruction fetch be made from
the sequentially next memory address.

When such a predictor is employed, one can take the view
that, in effect, all instructions are predicted because deci-
sions to merely keep fetching instructions from sequential
memory locations are, themselves, decisions.

To simplify the following discussion, the type of mispre-
dictions illustrated all involve the predictor making a wrong
prediction with respect to branch direction. However, the
reader is advised that the other two types of predictor outputs
can also be mispredicted, and that the technology described
herein is applicable in those instances as well.

History Administration

Maintaining the global branch direction history (referred
to as “history™) in good order can be fairly complex. Every
time the branch predictor predicts a branch, an indicator of
the predicted branch outcome is added to the history and the
oldest branch direction in the history is discarded. For
example, a single bit ‘0’ can be used to represent a “branch
not taken” outcome, and a ‘1’ can be used to indicate a
‘branch taken’ outcome. Adding the new prediction to the
history can be performed by, for example, shifting the
prediction (i.e., ‘0’ or ‘1’) into one end (e.g., the most
significant bit) of a register or other storage location that
contains the last set of prediction indicators. This new
history is used to make the next prediction.

Two things should be understood: The predictor is, first of
all, deciding (“predicting”) whether an instruction is a
branch source (i.e., an instruction residing in a last branch
delay slot of an associated branch instruction). The predictor
is also, when possible, predicting the outcome of the asso-
ciated branch instruction.

Now assume a pipeline with a branch predictor that
begins predicting an instruction’s type and outcome when
the instruction is loaded into the first stage of the pipeline,
and that has a predictor processing delay of 2 cycles, so that
the predictor delivers its prediction in the second stage of the
pipeline. Also assume that each unit of data fetched from the
program memory represents a single instruction. Using the
exemplary pipeline stages described in the Background
section, this would mean that the prediction for an instruc-
tion is made available when that instruction is in the IF2
stage. It can be seen that, by the time the prediction is made
available, the pipeline has already fetched and loaded
another instruction into the IF1 stage. (As mentioned above,
the predictor will begin making a prediction for this newly
fetched instruction immediately. Predictor processing takes,
in this example, two cycles so that the outcome of prediction
processing is not made available until the end of the next
cycle.) This implies that the branch prediction processing
that has started for the instruction in IF1 cannot utilize the
history updated with the prediction supplied in IF2 because
the start of prediction for the IF1 instruction and the comple-
tion of the prediction for the IF2 instruction occur during the
same cycle. This means that the history used by the predictor
when processing the instruction loaded in IF1 does not take
into account the prediction made for the immediately pre-
ceding instruction, but is instead based on the one before that
(i.e., it is the history that existed before the IF2 prediction
has been considered).

This arrangement gives rise to a disparity in how branch
history is capable of being administered. For example,
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assume that a prediction delivered for the IF2 stage is
correct. If the predicted branch is taken, the instruction in
IF1, which is the next sequential instruction following the
instruction in the IF2 stage, was incorrectly fetched and has
to be flushed. (“Flushing” an instruction means that it will be
treated as a “No Operation”—“NOP”—instruction as it
works its way through the remaining pipeline stages.) In
place of the flushed instruction will be one that is newly
fetched into IF1. This extra time to fetch the replacement
instruction gives the predictor the opportunity to make a
prediction for the next instruction in IF1 using an updated
history that includes the prediction just made for the instruc-
tion in IF2. In other words, assuming that a correct predic-
tion has been made, the next validly fetched instruction after
the instruction in the IF2 stage can take advantage of the
most recent prediction outcome; there need not be any delay
in using the prediction.

However, if the predicted branch is not taken, so that the
instruction following the one in the IF2 stage should rightly
be the next sequential instruction in the program, the instruc-
tion already loaded in the IF1 stage is the correct one and
will not be flushed. This means that the earlier discussed
history update delay of one cycle will prevail, and the
predictor will not be able to use the latest information when
making a prediction for this IF1 stage instruction.

To simplify the history update mechanism in view of this
disparity in possible outcomes (dependent on prediction
outcome), exemplary embodiments described herein always
delay updating the history used for predictions by one unit
of data (i.e., the amount of data supplied by the program
memory when a fetch is performed). That is, the prediction
outcome in a present cycle does not become part of the
maintained prediction history until it is associated with the
next unit of data to be fetched (keeping in mind that the
instruction in the IF1 stage has already been fetched, so that
it is, in a sense, “skipped over”).

The discussion so far has focused on the fact that incorrect
branch predictions can result in one or more incorrectly
fetched instructions being flushed from the processor pipe-
line, which results in wasted execution cycles (i.e., the
flushed instructions are treated as NOPs when they reach the
final, EXE stage of the pipeline, so no useful work is
performed). However, another detrimental aspect of an
incorrect branch prediction is that it produces an incorrect
branch prediction history. This, of course, seriously affects
the quality of branch predictions that rely on that incorrect
history.

In order to ensure prediction accuracy, the history used by
the predictor to continue predicting branches after an incor-
rect prediction has been made must be identical to the
history that the predictor would have used had the prediction
been correct. This means that to continue with branch
prediction the last correct version of the history is required.

All history information is communicated through the
pipeline (i.e., it is effectively shifted through the pipeline
along with the instruction that served as the context source
for making the prediction). When an instruction enters the
IF1 stage, the history value of that moment is captured and
kept with the instruction data. The captured history is the
same history that served as a basis for the branch prediction
that resulted in fetching the instruction in the IF1 stage, and
is referred to herein as “pred_hist”. For example, suppose
the prediction history is four bits long, and that the value of
pred_hist for the instruction in the IF1 stage is “Oxxx”
(where ‘x’ represents a don’t care bit bit). This means that
the last prediction having an effect on the pred_hist for the
instruction in the IF1 stage was a prediction equal to “not
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taken”. This prediction was made some number of fetches
earlier, the number being greater than 1 because of the delay
in updating prediction history. Similarly, if the value of
pred_hist for the instruction in the IF1 stage is “1xxx” this
means that the last prediction having an effect on the
pred_hist for the instruction in the IF1 stage was a prediction
equal to “taken”. As with all predictions, this prediction was
made some number of fetches earlier, the number being
greater than 1 because of the delay in updating prediction
history.

A number of examples will now be described to illustrate
various technical aspects of the so-far described arrange-
ment.

To simplify things, it is assumed that in the following
example each fetched memory unit of data contains only 1
instruction. (This assumption is changed in some later
examples.) Instructions are named in correspondence with
their relative program address (i.e., “0:” refers to an initial
program instruction, “1:” refers to a sequentially next pro-
gram instruction, and so on).

Reference is made to FIG. 4, which is a processing
sequence diagram 400 that illustrates a first set of exemplary
pipelined processor operations, including maintenance of
the branch prediction history, pred_hist, described above.
The exemplary processor is the five-stage pipelined proces-
sor described in earlier examples. For each stage, the fol-
lowing information is shown:

The instruction number, along with other pertinent infor-
mation such as whether the instruction is a branch (and
if so, what the actual outcome of that branch will be),
whether the instruction is in a last branch delay slot,
and whether the instruction has been flushed

The prediction history, pred_hist, that is associated with
that instruction as it passes from stage to stage through
the pipeline

A branch prediction made by a predictor, using the
instruction and its prediction history as a context.

Descriptive comments about the operations depicted in
FIG. 4 are grouped according to execution cycle:

Cycle 1:

Instruction 0 is in the EXE stage and marks the end of
branch delay slots (indicated with lower case “b”) of a
NT branch. (The branch instruction that corresponds to
this “end of branch delay slots™ has already exited the
pipeline. The instruction in the EXE stage at this
moment is not, itself, a branch instruction, which would
have been represented by an uppercase “B”.) This NT
outcome has its effect on the history with a fixed delay
of 2 units of data (in this example, 2 instructions) and
therefor becomes visible in the history that was used to
make a prediction for instruction 2 in ID1. (Note that a
‘0’, representing a “not taken” predicted outcome, has
been shifted into the left-most bit of pred_hist in the
ID1 stage.) The reader is cautioned not to be under the
impression that a delay of 2 units of data is equivalent
to a delay of two stages in the pipeline. As will be seen
later, flushed units of data are not counted in the delay
calculation. Similarly, the reader is cautioned not to be
under the impression that a delay of 2 units of data is
in all examples equivalent to a delay of two instruc-
tions. In this particular example, in which each unit of
data constitutes a single instruction, the equivalence
can be made. However, in later examples, it will be
seen that in some embodiments, units of data can each
represent a plurality of instructions. However, even in
such embodiments, the making of a prediction is rep-
resented in the prediction history two units of data later
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which, because each unit of data contains more than
one instruction, may be a delay of more than two
instructions.

Instruction 1 is in ID2 and (as an outside observer) we

know that it is a branch instruction (indicated with a
capital “B”) that will not be taken (NT) when it is later
evaluated in the EXE stage of the pipeline.

The end of the branch delay slots associated with the

branch in ID2 is marked by instruction 3 presently

the pipeline hardware will not know this actual out-
come until instruction 4 reaches the EXE stage.

14

branch predictor correctly predicts not only that
instruction 4 is a branch source, but also that the branch
(represented by instruction 4) will be taken and that its
target address will be 11. To stress one point: The fact
that instruction 4 is not only the end of a branch delay
slot program segment but is also itself a branch is not
known by the branch predictor and is also not relevant
to branch prediction. The predictor only tries to predict
locations that mark the end of the branch delay slots of

located in the IF2 stage. (Because the number of branch 10 branch instructions.
delay slots is variable, it could alternatively have been Because the branch predictor predicts a taken (T) branch,
in ID2, ID1, IF1, or even not yet fetched.) In this as well the control flow will have to be retargeted to the
as in following embodiments, predictions are made predicted target address (11). Also, since branch pre-
available in the IF2 stage when the instruction loaded diction is made at the end of the branch delay slots of
in that stage is predicted as being the end of a branch 15 the branch, any sequentially fetched instruction imme-
delay slot program segment. (Non-BDS-end instruc- diately following the end of the branch delay slots,
tions do not trigger branch prediction.) In this example currently in IF1, will be from the NT control path and
it can be seen that a prediction is made because the is therefore an incorrectly fetched instruction. At this
instruction in the IF2 stage (instruction 3) is the end of point, triggered by the prediction of a taken branch, the
a branch delay slot portion of the program. It can also 20 IF1 stage is flushed (invalidated e.g., by suitably adjust-
be seen that the predicted branch outcome is “NT”, ing the state of a flag signal associated with each
which we as outside observers who created the example instruction in the pipeline, indicating whether or not
know will be correct. (The pipeline hardware does not that instruction is valid), so that the instruction will
yet know the actual outcome of the branch, since that operate as a NOP. This cycle is now essentially lost, as
branch is presently in ID2.) By default, instructions are 25 the invalided instruction will flow through the pipeline,
fetched sequentially, so that the next instruction (in- but will not have any effect on the state of the processor.
struction 4) has already been loaded into the IF1 stage. Instruction 1 reaches the EXE stage and the branch
The prediction made in IF2 influences the pipeline instruction is evaluated. With the outcome of the
operation in that the already fetched instruction is branch now known by the pipelined processor, the
permitted to remain in the pipeline since it is the 30 accuracy of the prediction that was made for its end of
instruction that corresponds to a branch not taken branch delay slots (instruction 3, currently in ID1) can
condition. However, the effect of the NT prediction is now be evaluated. It turns out that this prediction was
not yet visible in the pipeline’s predicted history (pred_ correct, so no further action is needed.
hist) because its recordation will be applied with a Cycle 3
delay of 2 units of data (in this case, equal to 2 35  All instructions are advanced one stage in the pipeline.
instructions) and the second instruction has not yet Because of cycle 2’s predicted “branch taken”, the IF1
been fetched. The NT prediction is maintained as stage fetches the predicted branch target, which in this
meta-information that is attached to instruction 3 and is example is instruction 11. The prediction history that is
tracked through the pipeline as instruction 3 moves associated with this instruction is (00xx). Note that this
from one stage to the next. 40 history includes the effect of the two predicted NT’s
Instruction 4 in IF1 is a branch instruction with 0 branch based on the contexts of instructions 0 and 3 respec-
delay slots. This is indicated with the combination tively. However, the meta-information representing
“Bb”. As outside observers, we know that this branch instruction 11°s predicted history does not include any
instruction will eventually evaluate to Taken (T) and representation of the predicted T at instruction 4 (i.e.,
that its target address will be instruction 11. However, 45 the actual prediction that caused instruction 11 to be

fetched). This is because the lost, invalidated position
in the pipeline caused by a flush in cycle 2 does not

Cycle 2
All instructions shift down by 1 place in the pipeline.
Since, in the previous cycle, no program flow change 50
was predicted nor was one required as a result of

count towards the 2 units of data delay between the end
of the branch delay slots of a branch and its inclusion
in the prediction history.

Unknown to the pipelined processor but, for pedagogical

evaluation of a branch in the EXE stage, the sequen-
tially next address (instruction 5) will be fetched in IF1.
The history that is used to predict this instruction

reasons known to us, the readers, is the fact that the
newly fetched instruction 11 is a branch instruction (B)
that will eventually evaluate to “Taken” with target

“Instruction 21”.
Cycle 4
All instructions advance by 1 position in the pipeline. The
unit of data representing instruction 12 is fetched and

(00xx) now shows the effect of the prediction made for 55
instruction 3 in Cycle 1. Note that there is a two unit of
data delay again between instruction 3 and 5.

Instruction 4 reaches the IF2 stage and, because the

branch prediction unit predicts this as being the end of

loaded into IF1. This is simply the sequentially next

a branch delay slot program segment, a prediction 60 unit of data after instruction 11, since no control flow
regarding branch direction and possibly also branch change was predicted in the previous cycle, nor was
target are made there, using the history and context of there a branch instruction whose evaluation required a
instruction 4 as the basis for each of these predictions. control flow change. The meta-information represent-
(It is noted that instruction 4 is also a branch instruc- ing the prediction history that is associated with
tion—i.e., the size of the branch delay slot portion in 65 instruction 12 now includes information representing

this instance is zero—but its being a branch instruction
does not trigger the branch prediction.) In this case the

the prediction made with respect to instruction 4
because instruction 12 is the second fetched unit of data
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after instruction 4 (the flushed instruction 5 is not
counted in this computation).

Instruction 11 is in IF2, but no prediction is made, because
instruction 11 is the branch instruction (B), and the
branch predictor only detects (via prediction) the loca-
tion of the end of the branch delay slots (denoted by
lowercase “b”).

Cycle 5

This cycle is very similar to cycle 2. A Taken prediction
is made based on context information loaded in the IF2
stage, which causes a flush of IF1 (i.e., because IF1
contains the instruction that would have been fetched
based on the branch not being taken). Also, a branch
instruction (instruction 4) reaches the EXE stage,
where it is evaluated and the outcome compared to the
branch prediction at the end of its branch delay slots
(i.e., the prediction made with respect to instruction 4,
since this was a 0 delay slot branch). The prediction
matches the evaluated outcome, so no further action is
needed.

FIG. 5 is a processing sequence diagram 500 that illus-
trates the effect of an incorrect prediction on pipelined
processor operations, including its effect on maintenance of
the branch prediction history, pred_hist, described above.
The same exemplary five-stage processor is used in this
example and, for each stage, the same information is shown
as in FIG. 4.

Descriptive comments about the operations depicted in
FIG. 5 are grouped according to execution cycle:

Cycle 1

The processor predicts that instruction 3, presently in the
IF2 stage, is the end of the branch delay slots of a
branch instruction, and this prediction in turn triggers
the prediction of branch direction and possibly also
branch target. In this instance, the prediction is that the
branch will not be taken (NT). Although the pipelined
processor hardware does not yet know this, we as
outside observers who created this example know that
the corresponding branch instruction (instruction 1) is
currently in ID2, and that it will subsequently be
evaluated as a Taken branch. This means that the
prediction made in IF2 during cycle 1 will turn out to
be incorrect. However, in reliance on this incorrect
prediction, instruction 4 (just loaded into IF1) will not
be flushed during this cycle.

Cycle 2

The accuracy of the prediction made in cycle 1 is evalu-
ated when the corresponding branch instruction (in-
struction 1) reaches the EXE stage. In this case, evalu-
ation of the branch instruction at address 1 results in the
branch being taken with the target being instruction 11.
This actual branch result is compared with the pre-
dicted result (represented as “prediction” meta-infor-
mation presently stored in the ID1 stage along with its
corresponding instruction 3) and the pipeline thereby
detects that the prediction for this branch was incorrect.

As a consequence of detecting the erroneous prediction,
everything stored in the pipeline after the located end of
branch delay slots (i.e., everything fetched subsequent
to instruction 3) was fetched from an incorrect path (the
NT path) and needs to be flushed from the pipeline. In
this example the end of the branch delay slots is in the
ID1 stage, so instructions 4 and 5 in respective stages
IF1 and IF2 are flushed, but in general the location in
the pipeline from where the flush occurs can be in any
stage. To illustrate the consequence of the erroneous
prediction, instructions 4 and 5 are shown as being
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flushed in cycle 2. It will be appreciated that, in the first
part of cycle 2 prior up to detection of the erroneous
prediction, these instructions were flagged as “valid™;
the changing of their respective flags to “invalid”/
“flushed” occurs mid-cycle.

is important to note that all effects of the incorrect
prediction on the history are removed from the pipeline
as well. Specifically, instruction 5 includes meta-infor-
mation representing the predicted history updated to
include the erroneous NT prediction made with respect
to instruction 3 in cycle 1. (Instruction 5’s prediction
history includes this extra ‘0’ in the left-most (i.e., most
significant) bit—the predicted history is ‘00xx’—be-
cause, in this instance, instruction 5 is the second
fetched unit of data following instruction 3.) But,
because that prediction was erroneous, instruction 5’s
prediction history is also incorrect. Accordingly,
instruction 5’s prediction history is also flushed from
the pipeline.

Cycle 3

Branch evaluation of instruction 1 in cycle 2 resulted in

the branch being taken, so fetching in cycle 3 continues
with the correct target of the branch, which in this
instance is instruction 11.

Note that the predicted history associated with instruction

11 is the correct history (0xxx), taking all delay effects
of previous branches into account. More particularly,
the prediction made with respect to instruction 3 should
have been “Taken”, which will result in a ‘1’ being
shifted into the left-most bit of the prediction history.
However, since instructions 4 and 5 have been flushed
from the pipeline, they are not counted when the
pipeline computes the “fetched unit of data™ distance
from instruction 3. Therefore, instruction 11 is consid-
ered to be only the first fetched unit of data after
instruction 3 and the ‘1’ (indicating a taken branch) is
not yet represented in the prediction history. Instruction
11’s prediction history is therefore identical to the
prediction history associated with instruction 3. It is
apparent that determining exactly what the correct
prediction history is for a fetched instruction can result
in quite complicated hardware if, for example, a brute
force search is implemented. Technology for efficiently
determining what the correct history is when fetching is
resumed after a flush caused by an erroneous prediction
is discussed in greater detail below.

Cycle 4

Instruction 12 is fetched because it is the next sequential

instruction after instruction 11 and no prediction or
branch evaluation required a different action. Since
instruction 12 is the second fetched unit of data fol-
lowing instruction 3 (the end of instruction 1°s branch
delay slots), the prediction history associated with
instruction 12 now correctly includes the effect of the
Taken branch at instruction 1. It is important to note
that the prediction history cannot include information
representing incorrect predictions (it must in those
instances be updated to represent actual evaluation of
the branch instruction) because having misinformation
in the prediction history will degrade future prediction
performance.

Cycle 5

Normal operation, with the flushed instruction 4 essen-

tially acting as a NOP, so that the processor state is not
changed. Instruction 12 is now in the IF2 stage of the
pipeline, at which time the branch predictor output
indicates (as a result of prediction) that the instruction
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is the last instruction in the branch delay slot program
segment. Accordingly the branch predictor also sup-
plies outputs indicating that the associated branch will
be Taken, and that the branch target will be instruction
21. Although it is not shown in the Figure, in the next
cycle (cycle 6) instruction 21 will be fetched and
loaded into the IF1 stage as a result of the prediction
made in cycle 5. Also, because the prediction is that a
jump in control flow will be performed, instruction 13
(presently in 1F1) is flushed.
Variable-Length Instructions

In the pipeline examples presented so far, every unit of
data supplied by the program memory contains exactly one
instruction. However many processors employ variable
length instructions, meaning that each unit of data supplied
at the output of the program memory can contain multiple
instructions. This distinction is important when implement-
ing a history delay mechanism since, for variable-length
instructions, there is no longer a one-to-one correspondence
between delay cycles and instructions. The delay cycles in
these instances correspond to unit of data boundary cross-
ings.

A predicted taken branch will cause the pipeline to fetch
the unit of data containing the branch target as a new unit of
data (the branch target need not be the first instruction in the
newly fetched unit of data) and therefore will cause a unit of
data boundary crossing. This is even the case when the
branch jumps to itself. Because of this there is a difference
when program flow continues after an incorrectly predicted
taken branch versus continuation after an incorrectly pre-
dicted not taken branch.

Continuation after a taken branch implies continuation
after a unit of data boundary crossing. Typically this is not
true for a not taken branch and program flow will continue
from the same unit of data except in instances in which the
not taken branch source resides at the end of a unit of data,
in which case program flow will continue from the next unit
of data.

To illustrate these aspects, the next example assumes a
pipelined processor architecture in which each unit of data
fetched from program memory contains two consecutive
instructions. As with the earlier examples, instructions are
still named by their individual (byte) address. This example
will illustrate why there is a need not only to maintain the
above-described pred_hist, but also another version of
branch history, which is herein referred to as “next_hist”.

FIGS. 6a and 6b together constitute a processing
sequence diagram 600-1 and 600-2 that illustrates the effect
of an incorrect prediction on pipelined processor operations
when each unit of data fetched from program memory can
contain two instructions, including the effect of an incorrect
prediction on maintenance of the branch prediction history,
pred_hist, described above. The same exemplary five-stage
processor is used in this example and, for each stage, the
same information is shown as in FIGS. 4 and 5. Additionally,
for each processing stage there is shown an additional
branch history, next_hist.

Descriptive comments about the operations depicted in
FIGS. 6a and 6b are grouped according to execution cycle.
It will be observed that, because each fetch retrieves (poten-
tially) two sequential instructions, each stage simultaneously
processes two instructions (when two are present) during
each cycle:

Cycle 1
At the beginning of this example, instructions 0 and 1 are
in the EXE stage; instructions 2 and 3 are in the ID2
stage; instructions 4 and 5 are in the ID1 stage; instruc-
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tions 6 and 7 are in the IF2 stage; and instructions 8 and
9 are in the IF1 stage. Instructions 8 and 9 are in the
pipeline because the prediction made with respect to
instruction 4 was that its corresponding branch (instruc-
tion 0) would be not taken.

The prediction corresponding to the branch at instruction
0 is in the EXE and is therefore evaluated. This allows
the prediction made with respect to instruction 4 to be
evaluated and confirmed to be correct.

An (incorrect) taken prediction is made for instruction 6
in IF2, causing a flush of all of the already-fetched next
instructions (i.e., in this instance, instructions 7, 8 and
9).

Cycle 2:

The (incorrectly) predicted branch has caused the pro-
gram flow to jump to a new unit of data that needed to
be fetched from program memory (i.e., the unit of data
that contains instruction 11). Counting from instruction
4 towards IF1, there are two different units of data in
the pipeline (not counting units of data that contain
only flushed instructions. Instruction 6 is in a different
memory unit of data than instructions 4 and 5 (this is
the first unit of data delay) and instruction 11 is in yet
another unit of data (this is the second memory unit of
data delay). This causes the effect on the history caused
by the not taken branch at instruction 0 (with end of
branch delay slots at instruction 4) to become visible in
the history used to fetch the unit of data in IF1
(pred_hist=0xxx).

Cycle 3:

The not taken branch at instruction 5 is evaluated and
turns out to have been incorrectly predicted as “taken”
(the branch source for this branch is instruction 6). All
instructions fetched after the end of the branch delay
slots of this branch (i.e., instructions 7, 8, 9, 11, 12, and
13—there is no instruction 10) must be flushed from
the pipeline.

The history that is to be used to fetch the next instruction
for IF1 is rolled back (all incorrect speculative changes
reverted) based on the history of the unit of data from
which program flow will continue (i.e., history is
reverted back starting with instruction 6’s history). The
prediction made with respect to the instruction where
fetching will continue (instruction 7) is based on the
same history as the other instruction (instruction 6) in
the same unit of data. This history (xxxx) can be found
in the pred_hist field associated with instruction 6. To
find this pred_hist, the end of the branch delay slots
must be tracked down in the pipeline where the history
can then be retrieved. In some embodiments, the his-
tories associated with the branch source instruction (in
this example, instruction 6) are stored in, for example,
registers (not shown) so that they can be made available
as input to the branch predictor in cycle 4.

Continuing the example with FIG. 65:
Cycle 4:

Fetching continues in cycle 4 with the corrected history
(pred_hist=xxxx) determined in cycle 3 being associ-
ated with the newly fetched instruction 7.

Cycle 5:

Here we introduce an additional branch history that is
maintained as metadata with each instruction as it
passes through the pipeline: “next_hist”. The next_hist
field of instruction 6 (e.g., preserved in a register as
described with respect to cycle 3) contains the history
(Oxxx) that represents instruction 4’s “branch not
taken” prediction (in cycle 3) that would have been
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used to fetch the unit of data that contains instructions
8 and 9 had instructions not been flushed from the
pipeline. Note that if there had not been any incorrect
predictions, the number of units of data from instruc-
tion 4 up to the unit of data containing instructions 8
and 9, would have been 2.

Note: the next_hist of one instruction is essentially the
pred_hist of the instructions from the next memory unit
of data. Or put another way, the next_hist reflects the
effect of a branch instruction in the very next unit of
data, without the two unit of data delay that exists with
respect to the other branch history, pred_hist. It will be
understood that this same information can be found by
looking at a different location in the pipeline so from a
technical point of view it is not necessary. But the
conventional technology requires performance of two
searches of the pipeline to re-create an accurate branch
history after instructions have been flushed from the
pipeline. By storing these two different values as meta-
data with each instruction in the pipeline, it is possible
to avoid performing one of those searches. However, an
additional feature to be described below completely
eliminates the need to search through the pipeline
altogether.

Cycle 6:

The effect on the history caused by the not taken branch
at instruction 7 is now visible in IF1 (i.e., a ‘0’ has now
been shifted into pred_hist). From a branch history
perspective it is as if the faulty prediction at instruction
6 had never been made.

It can be seen from the above example that the mechanism
for retrieving the prediction history necessary to resume
fetching after one or more instructions have been flushed
from the pipeline is quite involved because the pipeline
stage where the end of the branch delay slots resides must be
found so that the branch history presently stored in that stage
can be retrieved. Since their variable size means that the
branch delay slots can end in any pipeline stage, there are as
many potential sources for the needed branch history as
there are pipeline stages. Implementing this “brute force
search” solution requires large multiplexing networks,
depending on the history size, that are potentially critical to
timing.

In the following, technology is described whose perfor-
mance is more efficient than a conventional, brute force
search. One aspect of this technology involves making all
necessary information available locally at the last stage of
the pipeline (EXE). To do this, yet another kind of branch
history, herein called “commit_hist”, is introduced. The
commit_hist is tracked by the last stage of the pipeline, and
represents actual (as opposed to predicted) branch outcomes
(e.g., taken or not taken) evaluated in that last stage. In the
cycle in which it is produced, a branch outcome is supplied
to the commit_hist storage mechanism (e.g., a register), so
that the updated value of commit_hist is available in the very
next cycle.

In order to facilitate a complete understanding of com-
mit_hist, the processing sequence diagram of FIGS. 6a and
65 has been further annotated to depict the generation of
commit_hist values for the given example. Looking first at
cycle 1, commit_hist has a value that, for teaching purposes,
is irrelevant. For this reason, it is depicted as ‘xxxx’ (i.e.,
each bit is a “don’t care” value). Of note is the fact that the
last stage of the pipeline (EXE) contains a branch instruction
(instruction 0), and that this branch is evaluated to have a
“not taken” outcome. Because each unit of data in this
example can include two instructions, instruction 1 is also in
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the EXE during cycle 1, but it is not a branch instruction and
so will not change the value of commit_hist.

The “not taken” outcome of instruction 0 is supplied to,
for example, a commit_hist register which is clocked at the
end of cycle 1. Consequently, the “not_taken” outcome in
cycle 1 (represented by a binary ‘0’) is reflected in com-
mit_hist in the very next cycle, cycle 2 (i.e., commit_hist in
cycle 2 is ‘Oxxx’).

In this example, none of the instructions 2, 3, and 4 is a
branch instruction, so the value of commit_hist remains
stable through cycles 2 and 3. In cycle 3, instruction 5 is a
branch instruction whose outcome evaluates to “not taken”.
This branch outcome is supplied to the commit_hist storage
mechanism at the end of cycle 3, so that the value of
commit_hist in cycle 4 (see FIG. 6b) reflects this second
“not taken” outcome (i.e., commit_hist in cycle 4 is now
‘00xx).

None of the remaining instructions passing through the
last stage of the pipeline in cycles 4, 5, and 6 is a branch
instruction, so the value of commit_hist remains stable at
‘00xx’. Although not shown in the figure, the value of
commit_hist will also remain unchanged in cycle 7 because
there was no branch evaluation in cycle 6.

With the two histories (pred_hist, next_hist) having
arrived at the last stage of the pipeline, and with commit_hist
being generated and maintained at the last stage of the
pipeline, they are immediately accessible (i.e., the pipeline
does not need to be searched to locate the values) and the last
stage of the pipeline has all of the information it needs to
correct the history data for the first stage of the pipeline
whenever such correction is necessary.

One aspect of embodiments consistent with the invention
involves arranging for the last stage of the pipeline (e.g., the
EXE stage) to have available copies of all information
required to determine the history for purposes of making a
complete and accurate recovery of that history in the event
of instructions being flushed from the pipeline. With this in
place, the branch history can be recovered based entirely on
information present in the last stage of the pipeline without
having to perform any searches of other pipeline stages.

The size of the branch delay slots is encoded in the branch
instruction (or equivalent information is encoded, making
the size of the branch delay slots determinable). Accord-
ingly, in another aspect of embodiments consistent with the
invention, when a branch instruction reaches the last stage of
the pipeline, its branch delay slots size is known (or can be
ascertained). The prediction histories maintained by the
pipeline are updated on boundaries between units of data.
For example, suppose that a unit of data is large enough to
represent four instructions in sequence. If the first of these
instructions is in a last branch delay slot associated with an
earlier branch, the prediction based on this instruction will
not be reflected in any of the instructions filling the rest of
the same unit of data. And, if one assumes a prediction delay
of two cycles, as has been discussed in the examples set out
above, the prediction will not be represented in the predic-
tion history (pred_hist) until the second unit of data fetched
after the present unit of data. The purpose of pointing this
out is to emphasize that it is not the number of instructions,
but rather the number of memory units of data, that plays an
important part in the various embodiments consistent with
the invention.

Accordingly, an aspect of the technology involves deter-
mining the number of unit of data boundary crossings that
exist between the unit of data containing the branch instruc-
tion presently in the last stage of the pipeline and the unit of
data containing the end of that branch instruction’s branch
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delay slots. Since, by definition, there cannot be any branch
instructions occupying any branch delay slots, all branches
that can influence the history at the end of the branch delay
slots have already reached the execution stage of the pipe-
line. Once it is known how many boundaries are crossed, the
correct history (equal to the history at the end of the branch
delay slots) can be picked from the histories available in the
last stage of the pipeline. These histories are: pred_hist,
next_hist and commit_hist.

A working embodiment illustrating these aspects in
greater detail are described in the following. In this exem-
plary embodiment, for purposes of consistency with the
earlier discussion, it is assumed that a branch prediction is
not added to the branch history until the second memory unit
of data following the unit of data containing the branch
source has been fetched. Later in this description, the
technology will be described in more general terms that do
not restrict embodiments to this particular prediction delay
value.

In an initial aspect, the distance (expressed in memory
units of data) from the instruction in the last stage (EXE) of
the pipeline to the end of its associated branch delay slots is
determined. The instruction in the last stage is a branch
instruction, and the address of the end of its associated
branch delay slots is the branch source (i.e., the point from
which program execution either continues with the next
sequential instruction or jumps to a branch target location,
depending on the outcome of branch evaluation). For the
sake of example, if one assumes that the pipeline hardware
utilizes an 8-bit addressing scheme, this distance can be
determined by first determining:

last_byte_of exe_instr_addr=exe_instr_addr+exe_in-
str_size-1

ey
where:

last_byte_of exe_instr_addr is the address of the last byte
of the instruction presently in the last stage (EXE) of the
pipeline;

exe_instr_addr is the address of the first byte of the
instruction presently in the last stage (EXE) of the pipeline;
and

exe_instr_size is the size, in bytes, of the instruction
presently in the last stage (EXE) of the pipeline.

Next, the address of the last byte of the instruction located
in the last of the branch instruction’s associated branch delay
slots (represented by “end_of bds_addr™) is determined:

end_of bds_addr=last_byte_of exe_instr_addr+
branch_delay_slot_size

@
where:

branch_delay_slot_size is the size (e.g., in bytes) of the
branch delay slots associated with the branch instruction. It
will be observed that a value of zero means that there are no
branch delay slots.

Now “last_byte_of exe_instr_addr” points to the last byte
of the instruction in the execution stage of the pipeline
(EXE) and “end_of bds_addr” points to the last byte of the
last instruction of the branch delay slots.

In order to restore the correct prediction history following
a branch misprediction, and again assuming exemplary
embodiments in which the prediction delay is 2 cycles, it is
necessary to determine the histories with which to predict
the two memory units of data that are to be (correctly)
fetched following the branch delay slots associated with the
branch presently in the last stage of the pipeline. The point
at which program flow should continue will be either the
byte after the end_of bds_addr (in the case of the branch
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being not taken) or the target of the branch (in the case of the
branch being taken). The location of the prediction histories
for the 2 memory units of data starting from this point
depends on the number of memory unit of data crossings
between the last byte of the branch instruction in the last
stage of the pipeline and the point at which program flow
should continue after the misprediction.

To ascertain this number, the technology must, in one
aspect, account for the number of memory unit of data
boundary crossings caused by fetching the instructions in the
branch delay slots. One way of determining this number is
by discarding the lower bits of both addresses (“last_byte_of
exe_instruction_addr” and of “end_of bds_addr”) and com-
puting the difference, with the number of lower bits dis-
carded being the number that leaves the granularity of the
addresses exactly equal to a memory unit of data.

Expressing these granularity adjusted addresses as last_
byte_of'exe_instruction_addr,,,and of end_ofbds_addr,,,,
respectively, the hardware can then determine the distance,
Dist, as:

Dist=end_of bds_addr,; ~last_byte_of exe_instruc-
tion_addr 5,

3

The difference between these two resulting addresses is the
distance in memory units of data from the last byte of the
branch instruction in EXE to the end of its branch delay
slots, and this distance also represents the number of
memory unit of data boundary crossings encountered
between those two addresses.

When a branch instruction is not taken and that branch
instruction’s last branch delay slot does not end at the last
byte of a memory unit of data, the calculated distance, Dist,
is the number of memory unit of data boundaries that are
crossed between the branch instruction in the last stage of
the pipeline and the memory unit of data containing the next
instruction to be executed following that branch instruc-
tion’s branch delay slots. This is because, in such instances,
the next sequential instruction following the branch delay
slots is in the same memory unit of data as the last byte of
the branch delay slots.

However, in other instances, 1 more memory unit of data
boundary will be encountered between the end_of_bds_addr
and the point at which program flow will continue after the
branch. This can be the case when either of the following
occurs:

1. The branch is not taken, but the end_of bds_addr is
located at the last byte of a memory unit of data. In this
case, the next instruction will begin at the start of the
next memory unit of data even though it is the next
address in sequence (i.e., even though its address is
end_of bds_addr+1). In this instance, a distance cor-
rection is made by incrementing the ascertained dis-
tance: Dist=Dist+1.

2. The branch in the last stage of the pipeline is taken. In
this case, the next instruction will begin somewhere in
a newly fetched memory unit of data, and this is
counted as 1 additional memory unit of data boundary.
In this instance, a distance correction is made by
incrementing the ascertained distance: Dist=Dist+1.
Accordingly, an aspect of some embodiments consistent
with the invention involves detecting instances in which the
branch is not taken but the end_of bds_addr is located at the
last byte of a memory unit of data or in which the branch in
the last stage of the pipeline is taken, and in those instances
incrementing the calculated distance by 1.
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Knowing the distance between the branch instruction in
the last stage of the pipeline and the memory unit of data
containing the next instruction to be executed following the
last instruction in the branch delay slots enables the tech-
nology to identify what values the prediction histories
associated with the instruction following the last instruction
in the branch delay slots should have. FIGS. 7a, 76, and 7¢
illustrate the relationship between this calculated distance
and the recovered branch prediction history in embodiments
that are characterized by having a 2-unit of data delay
between the branch prediction unit’s making a prediction
and the application of that prediction outcome to the main-
tained prediction history. The recovered pred_hist value is
the value that must be used to continue branch prediction in
the first stage of the pipeline (e.g., IF1).

It is important to understand that FIGS. 7a, 76, and 7¢ do
not depict the pipeline; they are illustrations of the dynamic
corrected instruction flow, separated by memory unit of data
(“UoD”) boundaries 701 and the histories (pred_hist,
next_hist) that should hold for these memory units of data.
A depiction of the pipeline would differ at least in that it
would generally include flushed instructions which may or
may not include entirely flushed memory units of data. A
pipeline depiction would also be able to illustrate the pas-
sage of time measured in terms of numbers of cycles.
However, because the number of flushed instructions in any
given instance is variable, whereas the number of UoD
boundaries is constant in all instances, these figures show the
passage of units of data, rather than time. All that is assumed
with respect to the pipeline is that branch instruction B; is in
the last stage of the pipeline (EXE). The rest of the pipeline
may or may not contain additional instructions after B,.
Each of the FIGS. 7a, 7b, and 7¢ shows boundaries 701
between memory units of data, and each memory unit of
data is identified as “UoD n”, where n is an integer.

FIGS. 7a, 7b, and 7¢ also show branch history values
referred to above as “pred_hist” and ‘“next_hist” being
associated with each memory unit of data. The last stage
(EXE) of the pipeline also has the third branch history,
commit_hist, described above. It will be observed that, for
each memory unit of data, the value of next_hist for a given
unit of data n is equal to the value of pred_hist for UoD n+1.
That is, wherein a branch prediction does not show up in
pred_hist until two UoDs after the prediction has been made,
that same branch prediction shows up in next_hist only one
UoD after the prediction has been made. This might at first
glance appear to violate the restriction that, due to the
2-cycle prediction delay, a prediction cannot be added to the
prediction history until two cycles after the prediction has
been made available. This seeming violation disappears,
however, when one recognizes that these figures do not
depict cycles; they depict memory units of data. Unlike the
value of pred_hist, which must be made available to the IF1
stage two cycles after the prediction has been made available
so that it can be used to start the prediction based on the
instruction loaded into IF1, the value of next_hist only needs
to be associated with a given memory unit of data by the
time that unit of data reaches the last stage of the pipeline
(i.e., for purposes of branch history recovery in the event of
a misprediction). Accordingly, when a prediction is made
available at the end of one cycle, it can be added to the value
of pred_hist associated with the unit of data fetched and
loaded into the first stage (IF1) of the pipeline in the next
cycle, and can simultaneously be added to the value of
next_hist associated with the unit of data that has been
shifted into the second stage (IF2) of the pipeline.
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As to the value of commit_hist, as explained earlier, it is
based on the outcome of actual branch evaluation in the last
stage of the pipeline. Therefore, it is clocked into a com-
mit_hist storage mechanism (e.g., a register) at the end of the
present cycle and is available in the very next cycle. Since,
unlike the other branch histories (pred_hist and next_hist)
this value is not communicated through the pipeline from
one cycle to the next, it is not strictly speaking associated
with a memory unit of data. Instead, its value can be thought
of as being associated with the last stage of the pipeline. It
represents the history of all branches that have become part
of the architectural (committed) state of the processor.

The nomenclature introduced earlier, in which a lower-
case “b” represents a branch source (defined as the last slot
of a branch instruction’s associated branch delay slots), and
an uppercase “B” represents a branch instruction, is used
here as well. In order to be able to represent prediction
values generically (i.e., without indicating whether the pre-
diction is “taken” or “not taken”) and also to be able to
identify the branch source that served as the basis for the
prediction, such predictions will be represented by an itali-
cized lowercase “b”. Similarly, in order to be able to
represent branch evaluations generically (i.e., without indi-
cating whether a particular evaluation resulted in “taken” or
“not taken”), and also to be able to identify the particular
branch instruction whose evaluation is being represented,
such evaluations will be represented by an italicized upper-
case “B”.

FIG. 7a depicts an instance 700-0 in which the distance
between an executed branch instruction (B;) in UoD 2 and
the instruction (Inst) following the branch instruction’s last
branch delay slot (b;) is calculated to be zero. In this
example, UoD 0 includes a last branch delay slot instruction,
b,, (i.e., the branch source for the branch B,) followed (with
possibly intervening instructions—not shown) by a branch
instruction, B,. The arrow 703 shows that, because of the
two-UoD prediction history delay, the prediction associated
with instruction b, is not introduced into the predicted
history, pred_hist, until UoD 2  (shown as
pred_hist=b,XXX), and into the herein-called “next history”
until UeD 1.

This example also shows that UoD 1 includes a last
branch delay slot (b, ), which is the branch source associated
with branch B,. This is followed (with possibly intervening
instructions—not shown) by a branch instruction, B,. The
arrow 705 shows that, because of the two-UoD prediction
history delay, the prediction associated with instruction b, is
not introduced into the predicted history, pred_hist, until
UoD 3 (shown as pred_hist=b b, XX) and into the next
history, next_hist, until UoD 2.

UoD 2 includes a last branch delay slot (b,), which is the
branch source associated with branch B,. This is followed
(with possibly intervening instructions—not shown) by a
branch instruction, B;, and this in turn is followed (with
possibly intervening instructions—not shown) by a last
branch delay slot (b,), which is the branch source for B;. The
arrows 707 and 709 show that, because of the two-UoD
prediction history delay, the predictions associated with
instructions b, and b, respectively, are not introduced into
the predicted history, pred_hist, until UoD 4 (shown as
pred_hist=b,b,b,b,), and because of the one-UoD delay,
these predictions are not introduced into the next_hist until
UoD 3.

Since UoD2 contains a branch instruction, B;, that is
presently in the last stage (EXE) of the pipeline (indicated in
the figure by the EXE pointing to the position of B;), it is
worthwhile illustrating the value of commit_hist at this
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point. As mentioned earlier, the value of commit_hist is
derived from the outcome of actual branch evaluation. The
branch outcome value is clocked into the commit hist
storage mechanism upon completion of the cycle in which
the branch instruction is evaluated. Since, in this example,
the branch instruction, B;, is only in the process of being
evaluated, its outcome is not yet known, the value of
commit_hist=B,B,B, X, which reflects the outcomes of
only previously evaluated branches.

FIG. 7b depicts an instance 700-1 in which the distance
between an executed branch instruction (B;) in UoD 2 and
the instruction (Inst) following the branch instruction’s last
branch delay slot (b;) is calculated to be one (i.e., one
memory unit of data boundary is crossed between those two
memory locations. The descriptions of UoD 0 and UoD 1 as
well as their effect on the values of pred_hist associated with
UoD 2 and UoD 3, respectively, and their effect on the
values of next_hist associated with UoD1 and UoD 2,
respectively, are the same as those set forth above with
respect to FIG. 7a, and therefore need not be repeated. The
same is true with respect to the value of commit_hist: As
with the example of FIG. 7a, commit_hist is clocked at the
end of a cycle in which a branch is evaluated in the last stage
of the pipeline. At the moment in time captured in this
example, the branch instruction B; in UoD2 is only in the
process of being evaluated, so its outcome is not yet known.
Consequently, the value of commit_hist=B,B B, X, which
reflects the outcomes of only previously evaluated branches.

UoD 2 includes a last branch delay slot (b,), which is the
branch source associated with branch B,. This is followed
(with possibly intervening instructions—not shown) by a
branch instruction, B; The arrow 707 shows that, because of
the two-UoD prediction history delay, the prediction asso-
ciated with instruction b, is not introduced into the predic-
tion history, pred_hist, until UoD 4 (shown as
pred_hist=b,b, b, X), and because of the one-UoD delay, this
prediction is not introduced into the next_hist until UoD 3
(shown as next_hist=b,b,b, X).

This example differs from that of FIG. 7a in that the
branch source associated with branch B; (i.e., the instruction
b;) is included in UoD 3 rather than UoD 2. Further, since
UoD 3 also includes a following instruction, Inst, the
calculated distance (i.e., the number of memory unit of data
boundary crossings) from the branch, B;, to the instruction,
Inst, is equal to one. The arrow 711 shows that, because of
the two-UoD prediction history delay, the prediction asso-
ciated with instruction b; is not introduced into the predic-
tion history, pred_hist, until UoD 5 (not shown) and because
of the one-UoD delay, this prediction is not introduced into
the next_hist until UoD 4 (shown as next_hist=b;b,b,b,).

FIG. 7¢ depicts an instance 700-2 in which the distance
between an executed branch instruction (B;) in UoD 2 and
the instruction (Inst) following the branch instruction’s last
branch delay slot (bs) is calculated to be two. The descrip-
tions of UoD 0 and UoD 1 as well as their effect on the
values of pred_hist associated with UoD 2 and UoD 3,
respectively, and their effect on the values of next_hist
associated with UoD1 and UoD 2, respectively, are the same
as those set forth above with respect to FIG. 7a, and
therefore need not be repeated. The same is true with respect
to the value of commit_hist: As with the example of FIG. 7a,
commit_hist is clocked at the end of a cycle in which a
branch is evaluated in the last stage of the pipeline. At the
moment in time captured in this example, the branch instruc-
tion B; in UoD2 is only in the process of being evaluated, so
its outcome is not yet known. Consequently, the value of
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commit_hist=B,B,;B, X, which reflects the outcomes of
only previously evaluated branches.

As with the example of FIG. 75, UoD 2 shown in FIG. 7¢
includes a last branch delay slot (b,), which is the branch
source associated with branch B,. This is followed (with
possibly intervening instructions—not shown) by a branch
instruction, B; The arrow 707 shows that, because of the
two-UoD prediction history delay, the prediction associated
with instruction b, is not introduced into the prediction
history, pred_hist, until UoD 4 (shown as pred_hist=b,b,b,
X), and because of the one-UoD delay, this prediction is not
introduced into the next_hist until UoD 3 (shown as
next_hist=b,b, b, X).

In this example, there are no predictions made with
respect to instructions in UoD 3. The branch source (b,) for
the third branch instruction, B, is included in UoD 4. As
indicated by the arrow 713, the prediction made with respect
to this end of branch delay slots instruction will be reflected
in the pred_hist associated with UoD 6 (not shown), and will
be reflected in the next_hist associated with UoD 5 (not
shown).

The branch source instruction b is followed in UoD 4 by
another instruction (Inst). Consequently, the calculated dis-
tance (i.e., the number of memory unit of data boundary
crossings) from the branch, B;, to the instruction, Inst, is
equal to two.

A study of the examples shown in FIGS. 7a, 74, and 7c
makes it clear that the distance, expressed in memory units
of data, between the branch in the last stage (EXE) of the
pipeline and the instruction following the branch’s end of
branch delay slots is a factor in determining which histories
should be associated with the unit of data immediately
following the end of the branch delay slots. Since the
histories pred_hist and next_hist are carried through the
pipeline with their associated memory unit of data, and since
the value of commit_hist is generated from all branches that
have passed through the last stage of the pipeline, the last
stage of the pipeline has ready access to any history infor-
mation that is necessary to recover a correct history after a
misprediction. In particular, the values of what are herein
referred to as “recovery histories” (in this embodiment,
corresponding to pred_hist and next_hist) to be used for the
next memory unit of data following the branch source (end
of'branch delay slots) can be expressed in terms of the values
that are available in the last stage of the pipeline. For
convenience, these readily available values are referred to
herein as EXE.pred_hist, EXE.next_hist and EXE.com-
mit_hist. (The qualifier “EXE” denotes that these are the
values that are readily available to the last stage of the
pipeline.)

It is also observed that the distance can always be stati-
cally determined (using subtraction) and does not depend in
any way on the layout of the pipeline, the number of pipeline
bubbles, how many stalls or flushes there have been, or any
other dynamic behavior of the pipeline.

In this embodiment, there are two recovery histories,
denoted recov_hist(0) and recov_hist(1) (in correspondence
with the two maintained histories pred_hist and next_hist)
whose values are needed for branch registration or history
repair following the end of the BDSs. In general, the number
of recovery histories will correspond to the number, N, of
histories maintained in the set of branch prediction histories
809, 811. In the exemplary embodiment, determining the
values of the recovery histories involves differentiating
between 3 cases, depending on the distance (“Dist”) calcu-
lated in the manner described above (including possible
adjustment when the branch is not taken but the end_of
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bds_addr is located at the last byte of a memory unit of data
or when the branch in the last stage of the pipeline is taken).
The three cases, and the steps performed for assigning
values to recov_hist(0) and recov_hist(1) are as follows:

1. Distance=0: 5

recov_hist(0)=EXE.pred_hist

recov_hist(1)=EXE.next_hist

2. Distance=1:

recov_hist(0)=EXE.next_hist

recov_hist(1)=EXE.commit_hist 10

3. Distance =2:

recov_hist(0)=EXE.commit_hist

recov_hist(1)=EXE.commit_hist

Notice that when EXE.commit_hist is used, its value is
the value just prior to the updated value that reflects the 15
outcome of the branch currently in EXE.

The following discussion lays out in further detail how
these histories are used for fetching when the speculative
history needs to be repaired after a flush of the pipeline.

With the values of recov_hist(0) and recov_hist(1) being 20
derived from histories that arrive through the pipeline along
with their associated memory unit of data, and with the value
of commit_hist being generated and maintained in connec-
tion with the last stage of the pipeline, the last stage has all
the information needed to restore the speculative history 25
after a misprediction. The goal is to restore the information
in such a way that the Instruction Fetch Unit will use the
correct prediction histories to continue fetching, just as if the
misprediction had never occurred. Depending on the direc-
tion of the branch where the misprediction occurred, the 30
information is restored in different ways. This is because in
case of a taken branch, the first fetch after the misprediction
is the target of the branch, which is a newly fetched memory
unit of data, whereas a repair after a not taken branch can
involve re-fetching the memory unit of data where the 35
misprediction occurred. This difference in fetching either a
new memory unit of data or a repeat of the memory unit of
data where the misprediction occurred is the reason for the
difference in repair actions.

There is yet another wrinkle in the analysis of how a 40
restoration of speculative branch history needs to be carried
out, and this relates to the relative position of the branch
source (i.e., the end of a branch instruction’s branch delay
slots) within a memory unit of data. More particularly, when
the last byte of a branch source of a mispredicted not taken 45
branch (i.e., a not taken branch whose associated prediction
wrongly indicated that it would be “taken”) is followed by
another instruction within the same memory unit of data, the
first memory unit of data that is fetched after the repair is the
same memory unit of data that contains the branch source, 50
as mentioned above.

However, when the last byte of a branch source of a
mispredicted not taken branch (i.e., a not taken branch
whose associated prediction wrongly indicated that it would
be “taken”) occupies the very last position within a memory 55
unit of data, the first memory unit of data that is fetched after
the repair is not the same memory unit of data upon with
word where the misprediction occurred, but is instead the
sequentially next memory unit of data. Since this is a new
memory unit of data, it is similar to the case in which repair 60
involves fetching the target of a taken branch. Accordingly,

a mispredicted not taken branch whose branch source
resides at the end of a memory unit of data should be
repaired in the same way that a mispredicted taken branch is
repaired. As described earlier, to account for this, some but 65
not necessarily all embodiments include detecting instances
in which the branch source of a mispredicted not taken
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branch occupies the very last position within a memory unit
of data, and in those detected instances incrementing the
calculated distance by 1.

Handling the several cases is described in the following:

1. Branch is not Taken (but Mispredicted as “Taken™),
with Last Byte of Branch Source not being at End of
Memory Unit of Data

After a not taken branch, the first fetch will be a repeat of
the memory unit of data where the misprediction
occurred so that remaining instructions following the
branch source in that memory unit of data can be
executed. The first time this memory unit of data was
fetched, its address was supplied to the branch predic-
tion unit along with the value of recov_hist(0) (or
equivalently, pred_hist) for the purpose of predicting
whether this memory unit of data is an end of branch
delay slots (and if so, the branch direction of the
associated branch and possibly also the target address),
so that is what it should be used again. In this respect
it is important to understand that when program flow
continues after a “branch not taken” that had been
mispredicted as “taken” and the last byte of the branch
source is not equal to an end of memory unit of data,
predictions must be made for subsequent “ends of
branch delay slots” that may be present in that memory
unit of data, and in order to make this prediction, the
history used to perform the earlier misprediction for
this memory unit of data must be used again. Note that,
as mentioned earlier, if the not taken branch source
happens to be at the very end of a memory unit of data,
there is no need to re-fetch this memory unit of data
because there are no further instructions that have yet
to be executed within the unit of data. For this reason,
this special case is handled like a mispredicted taken
branch.

The second fetch after the misprediction will be the next
sequential memory unit of data and it should be pre-
dicted with recov_hist(1).

Analysis shows that commit_hist has been updated for all
branches up to and including the misprediction (but not
for any branches situated after the not taken branch).
This makes commit_hist the history that should be
updated with the first new prediction after the mispre-
diction.

2. (a) Branch is Taken (but Mispredicted as “not Taken™)
OR (b) Branch is not Taken (but Mispredicted as “Taken™)
and Last Byte of Branch Source is at End of Memory Unit
of Data

After a taken branch, the first fetch will be the target of
that branch. Or, in the case of a not taken branch with
branch source at the end of a memory unit of data, the
first fetch will be the next sequential unit of data
following the branch source. Since the target is the first
memory unit of data after the memory unit of data
where the misprediction occurred, it should be pre-
dicted with recov_hist(0), keeping in mind that the
values of recov_hist(x) are determined based on an
adjusted (incremented) value of computed Distance.

The second fetch after the misprediction will be the next
sequential memory unit of data after the branch target
and its address should be predicted with recov_hist(1),
keeping in mind that the values of recov_hist(x) are
determined based on an adjusted (incremented) value
of computed Distance. Because the branch is taken,
recov_hist(1) (whose value has been set to EXE.com-
mit_hist) is fully updated for all branches up to and
including the memory unit of data where the mispre-
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diction occurred, which makes commit_hist the 2
memory unit of data delayed version of the history that
is needed for the next sequential memory unit of data
after the branch target.

Analysis shows that commit_hist has been updated for all
branches up to and including the misprediction, so it is
the history that should be updated with the new pre-
dictions after the misprediction

The examples presented so far relate to embodiments in
which the predictor requires two cycles to produce a pre-
diction based on supplied prediction history and a present
instruction context (e.g., a branch source instruction). To
accommodate this delay, a strategy has been employed in
which a prediction made with respect to a given memory
unit of data first makes an appearance in the prediction
history associated with a memory unit of data that is two
units after the given memory unit of data that served as the
source of the prediction. However, this is not an essential
aspect of embodiments consistent with the invention. To the
contrary, the principles that have been taught in the various
working embodiments described up to this point can be
applied in other embodiments, in which the delay (measured
in terms of memory units of data) between a memory unit of
data that serves as the basis of a prediction and the memory
unit of data whose associated prediction history first reflects
the prediction is other than two memory units of data.

To illustrate this point, FIG. 8 is a diagram of a plurality
of memory units of data 801 whose addresses increase from
right to left as shown in the figure. Consider an exemplary
one of these, the unit of data 803. As with FIGS. 7a, 75, and
7c, it is important to understand that FIG. 8 does not depict
the pipeline; it illustrates a dynamic instruction flow, sepa-
rated by memory unit of data boundaries.

In this example, the unit of data 803 includes a branch
source, denoted b,. Consistent with the earlier examples, the
branch source is associated with a branch instruction,
denoted B, and is located in a last branch delay slot of the
associated branch instruction B,. Because the size of the
branch delay slots is variable and can range from any value
greater than or equal to zero, the number of memory unit of
data boundaries between the branch instruction, B, and the
branch source instruction, by, can also be greater than or
equal to zero.

Also consistent with earlier described embodiments,
branch predictions are made with respect to branch source
instructions. In the general case, one can consider embodi-
ments that employ a branch predictor that requires N cycles
from the time prediction starts until it is made available at
the output of the predictor, where N is greater than or equal
to one. Embodiments can then be designed such that pre-
diction history is updated in the N* memory unit of data
following the one that served as the basis for the prediction.
This is illustrated in FIG. 8 by the prediction history update
805 associated with the branch source instruction b, (located
in memory unit of data 803) being applied with respect to a
memory unit of data 807 that is the N unit of data following
the memory unit of data 803. This means, and as shown in
the figure, that there are N unit of data boundaries between
the memory unit of data 803 and the memory unit of data
807.

As with earlier described embodiments, each memory
unit of data is associated with a branch prediction history
that is carried along with the memory unit of data as
metadata as the memory unit of data progresses through the
pipeline. Keeping in mind that the goal is to enable the last
stage of the pipeline to have ready access to all of the branch
prediction histories that could potentially be required to
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repair the branch prediction histories of memory units of
data that are fetched as part of recovery from a detected
branch misprediction, each memory unit of data has asso-
ciated with it a set of N branch prediction histories. The N
histories correspond to each memory unit of data maintain-
ing the branch prediction history that was used to predict the
memory unit of data itself as well as the sequentially next
N-1 branch prediction histories that were used to generate
addresses for the N-1 memory units of data that were
fetched between the memory unit of data and the N? next
memory unit of data to which a present prediction update
will be applied.

To facilitate a better understanding of this concept, con-
sider the memory unit of data 803. As mentioned earlier, a
branch prediction based on this memory unit of data will be
applied to update the branch prediction history of the
memory unit of data 807, which is the N* memory unit of
data following the memory unit of data 803. Accordingly,
the memory unit of data 803 is associated with a set of
branch prediction histories 809. The set of branch prediction
histories 809 comprises N branch prediction histories,
denoted Pred_Hist,(0), Pred_Hist,(1), . . . , Pred_Hist,(N-
1). The subscript “0” is used herein to denote that the set of
branch prediction histories is associated with a particular
memory unit of data.

Consistent with earlier embodiments, the value of Pre-
d_Hist,(0) is the branch prediction history that was used to
generate the address for fetching the memory unit of data
803. This is equivalent to be branch prediction history
denoted “pred_hist” in the earlier described embodiments.

The value of Pred_Histy(1) is the branch prediction his-
tory that was used to generate the address for fetching the
very next memory unit of data following the memory unit of
data 803. This is equivalent to be branch prediction history
denoted “next_hist” in the earlier described embodiments.

In embodiments in which N=2, there is no need for
additional prediction histories as this is exactly the class of
embodiments described with reference to earlier figures. (It
will be recalled that the third described history, namely
“commit_hist”, is not a prediction history but is instead a
history of actual branch evaluation outcomes and is gener-
ated and maintained in the last stage of the pipeline; it is not
a value that is carried through the pipeline with a memory
unit of data.)

However, in the general case, it is necessary to associate
each memory unit of data with its own prediction history as
well as the N-1 prediction histories that are used to predict
the next N-1 memory units of data.

To reinforce the understanding that each memory unit of
data is associated with its own set of branch prediction
histories, FIG. 8 also shows that the memory unit of data 807
is associated with a set of branch prediction histories 811
whose values (Pred_Hist,(0), Pred_Hist, (1), . . . , Pre-
d_Hist,, (N-1)) represent the prediction history used to
predict the address of memory unit of data 807 and the
subsequent N-1 memory units of data. It will be understood
that FIG. 8 depicts only the association between branch
prediction histories and memory units of data. However,
because FIG. 8 does not represent the pipeline, the timing of
branch prediction history creation is not shown. In this
respect, it should be understood that the N prediction his-
tories associated with any given memory unit of data
become available during the N cycles following the moment
that the unit of data enters the pipeline until a prediction
concerning that unit of data (e.g., whether it is branch
source, if so the predicted branch direction, if taken the
target address) is made for it.
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When it is necessary to repair sets of branch prediction
histories following a misprediction, the technology uses the
same procedures as described earlier to calculate the dis-
tance (numbers of boundary crossings) between the branch
instruction associated with the misprediction and the instruc-
tion following the branch instruction’s end of branch delay
slots. Using the examples of FIGS. 7a, 75, and 7¢ as a guide
(along with the teachings set out with respect to earlier
figures), the person of ordinary skill in the art will readily
understand the principles to be applied in any given embodi-
ment when it is necessary to determine values of BDS_
Pred_Hist, (0), BDS_Pred_Hist, (1), . . ., Pred_Hist, (N-1)
based on the calculated distance and the values of the set of
branch prediction histories as well as commit_hist presently
available in the last stage of the pipeline. (When N=2, the
values of BDS_Pred_Hist, (0) and BDS_Pred_Hist, (1) are
the values of BDS_pred_hist and BDS_next_hist, described
earlier).

To further illustrate aspects of embodiments consistent
with the invention, FIGS. 9a and 95 together are, in one
respect, a flow chart of steps/processes performed by cir-
cuitry in accordance with some but not necessarily all
exemplary embodiments of the invention for the purpose of
recovering instructions and branch histories in a pipelined
processor after a pipeline flush caused by branch mispre-
diction. In another respect, FIGS. 9a and 95 together can be
considered to depict exemplary means 900, 950 comprising
the various illustrated circuitry (e.g., hard-wired and/or
suitably programmed processor) configured to perform the
described functions.

The environment in which the steps are carried out is a
pipelined processor having a plurality of serially connected
processing stages including a first stage and a branch evalu-
ation stage. In the above-described embodiments, the last
stage of the pipeline has been the branch evaluation stage.
However, it is recognized that alternative embodiments can
be devised in which this is not the case. For this reason, in
the following description, which is intended to describe
aspects generically, the term “branch evaluation stage” is
used.

It is also assumed that one of the processing stages other
than the branch evaluation stage is a prediction start stage
that supplies information for making branch predictions.
Also, the pipelined processor is operatively coupled to a
memory that comprises a plurality of addressable storage
locations, each storage location being for storing one unit of
data.

Consistent with the above-described embodiments, the
pipelined processor executes instructions from an instruc-
tion set that includes a branch instruction and each branch
instruction is associated with a set of branch delay slots
whose size can be greater than or equal to zero and whose
size can be different from one instance of a branch instruc-
tion to another, and in which the last one of the branch delay
slots is a branch source of the associated branch instruction.

Given this context, operation of the pipeline includes, in
a first processing cycle, supplying a first branch prediction
history as input to a branch predictor that requires N cycles
to produce an output (step 901). Then, in an N processing
cycle after the first processing cycle, a memory unit of data
is loaded into the first stage of the pipelined processor (step
903). In general, the memory unit of data can include any
type(s) of instruction(s). However, to facilitate an under-
standing of certain aspects of embodiments consistent with
the invention, the description will focus on instances in
which the memory unit of data includes a branch instruction.
Consistent with the description of the environment, the
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branch instruction is associated with a set of branch delay
slots whose number can be greater than or equal to zero. The
last one of the branch delay slots serves as the branch source
of the branch instruction. Note: In instances in which the
number of branch delay slots is zero, the branch instruction
is, itself, the branch source of the branch instructions. But
since the number of branch slots can vary from one instance
of a branch instruction to another, this is not generally the
case.

The reader is also informed that some aspects of pipeline
operation have been simplified to avoid cluttering the
description with details that are not critical to attaining an
understanding of the various aspects of embodiments con-
sistent with the invention. However, it is worth pointing out
that, in some embodiments, fetching a memory unit of data
can actually take place over a plurality of cycles. The
illustrated stages during which a fetch is “in flight” are
named as such. For example, in the embodiments illustrated
herein, a fetch can be considered to be in flight during the
cycles associated with the IF1 and IF2 stages, at the end of
which the data becomes available from the memory and can
be clocked into the next stage (ID1) where its decoding can
start. In such embodiments, during IF1 and IF2, no data from
the program memory is yet available. Consequently, those
stages deal only with “meta” information, such as the
memory address from which the memory unit of data is
being fetched, and also the value of pred_hist with which a
prediction for the corresponding (in flight) memory unit of
data is being made. Therefore, it will be understood that the
term “loading” is used broadly to encompass all such types
of'embodiments (i.e., those in which the memory unit of data
is clocked into a first processing stage, and others in which
it is “in flight” over a number of cycles.

As the memory unit of data progresses through the
processing stages from one cycle to a next, a set of N branch
prediction histories that are associated with the memory unit
of data is built, wherein the N branch prediction histories
comprise the first branch prediction history and N-1 branch
prediction histories used to predict N-1 subsequently
fetched memory units of data (step 905). The value of N is
equal to the number of cycles the branch predictor requires
to generate each predicted address. For example, in the
above-described embodiments, N=2, but this need not be the
case in all embodiments.

Additionally, a history of evaluated branch outcomes of
branch instructions that reached the branch evaluation stage
is maintained (e.g., in the branch evaluation stage of the
pipeline) (step 907). For ease of illustration, this is shown as
being in parallel with step 905. However, in practice this is
performed in parallel with all earlier steps.

When the branch instruction reaches the evaluation stage,
the technology detects whether a branch misprediction has
occurred (decision block 909). Detection is based on a
present evaluation of the branch instruction included in the
memory unit of data and an earlier predicted outcome. If no
misprediction has occurred (“NO” path out of decision block
909), processing continues as described (schematically rep-
resented by the return to the start of the flowchart, although
due to the inherent parallelism of a pipelined processor, the
various illustrated steps take place at the same time as one
another, although with respect to different instructions and
memory units of data).

If a branch misprediction is detected (“YES” path out of
decision block 909, and continuing on FIG. 95), then values
of each one of N recovery histories are selected from the
history of evaluated branch outcomes and the set of branch
prediction histories (step 911). Respective ones of the N
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selected recovery histories are then supplied as input to the
branch predictor when each one of N next memory units of
data are loaded into the prediction start stage of the pipeline
(step 913).

Looking at step 911 in greater detail, in some embodi-
ments this comprises (also shown in FIG. 95), computing a
distance that represents how many memory unit of data
boundaries exist between the branch instruction and the
branch source of the branch instruction (step 915).

Then, values are selected from the evaluated branch
outcomes and the set of branch prediction histories associ-
ated with the memory unit of data as a function of a set of
parameters (step 917). As described in the working
examples presented above, the set of parameters comprises
the computed distance. Another parameter can be whether
the branch source of the branch instruction is a last instruc-
tion in the memory unit of data. Also, as described earlier,
another parameter can be whether the branch outcome
evaluates to “taken”.

FIG. 10 is a block diagram of a pipelined processor 1000
in accordance with embodiments that are consistent with the
invention. In particular, the pipelined processor 1000 is
configured to carry out processing in accordance with any of
the earlier-described embodiments, such as the methodology
described with respect to FIGS. 94 and 95. The pipelined
processor 1000 includes a pipeline 1001 that is made up of
a plurality of serially connected processing stages. In this
example, there are five stages (IF1, IF2, ID1, ID2, and EXE),
but the principles disclosed here are equally applicable to
pipelines having a different number of processing stages
(i.e., more or fewer than five).

Instructions for the pipeline are fetched from a memory
1003 and supplied to a first stage of the pipeline 1001, which
in this example is the IF1 stage. As explained in greater
detail earlier, the processing stages of the pipeline 1001
operate concurrently, each based on its own instruction (and
possibly also data). Only the last stage of the pipeline 1001
(in this example, the EXE stage) is capable of changing the
committed state of the pipelined processor 1000. To facili-
tate this aspect of processing, the last stage of the pipeline
(e.g., EXE stage) can supply data to a data input port of the
memory 1003.

The pipelined processor 1000 also includes a branch
predictor 1005 that produces an output indicating whether an
instruction is a branch source, and if so what the evaluated
branch direction is predicted to be, and if a “branch taken”
condition is predicted then what the branch target is pre-
dicted to be. If a prediction is “not a branch source”, then the
pipelined processor 1000 simply continues fetching a next
memory unit of data from the sequentially next address. The
prediction algorithm used by the branch predictor 1005 can
be instantiated by means of any known predictor algorithm,
such as and without limitation, technology disclosed by
Scott McFarling, “Combining Branch Predictors”, WRL
Technical Note TN-36, June 1993, pp. 1-25, Digital Western
Research Laboratory, Palo Alto, Calif.,, USA. In the illus-
trated embodiment, the branch predictor 1005 bases its
prediction on information (e.g., branch history, addresses,
etc.) made available in the first stage (e.g., IF1) of the
pipeline 1001. However, branch prediction takes time. In
exemplary embodiments described above, the branch pre-
dictor requires 2 cycles before a branch prediction is made
available at the output of the branch predictor 1005. In such
embodiments, the branch predictor is itself pipelined and
can be considered to run in parallel with (or be part of) the
IF1 and IF2 stages, with address and history information
being supplied to the branch predictor input in IF1, and
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output (e.g., prediction information) being made available at
the end of the IF2 stage. However, in the general case, this
is considered to be N cycles, as described above with respect
to FIGS. 9a and 954. For this reason, the branch predictor
1005 is illustrated as a block that receives its input in the IF1
stage, and that makes the corresponding prediction output
available after N cycles.

Because of its relationship with the branch predictor
1005, the first stage (e.g., IF1) is, in this embodiment, the
designated “prediction start stage” (i.e., this is the stage in
which information for making predictions is first supplied to
the branch predictor which, in general, takes N cycles to
produce an output from that input information). However,
this aspect can be different in alternative embodiments. As
just one of many possible examples, the predictor may
instead be associated with the second processing stage (e.g.,
IF2 stage) of the pipeline 1001, in which case the second
stage would be the prediction start stage. To facilitate the
description, the term “prediction start stage™ is herein used
to refer to whichever one of the processing stages is asso-
ciated with the branch predictor 1005 and supplies informa-
tion that is used by the branch predictor 1005 to make a
prediction.

The branch predictor 1005 of embodiments consistent
with the invention starts making branch outcome predictions
(e.g., direction, target) when it has concluded that an instruc-
tion presently loaded in the prediction start stage of the
pipeline 1001 is in the last slot of a variable branch delay slot
portion of a program. This is the branch source of an
associated branch instruction. It will be observed that, since
embodiments consistent with the invention permit branch
instances in which the size of the branch delay slot portion
is zero, it can sometimes be the case that a branch prediction
will start to be made when a branch instruction is in the
prediction start stage of the pipeline 1001. However, since
the size of a branch delay slot portion is variable, meaning
that it can vary from one branch instance to another, it is
generally the case that any type of instruction may occupy
the prediction start stage at the time that a branch prediction
is made, and that the associated branch instruction will
already have occupied and then been shifted out of the
prediction start stage.

The pipelined processor also includes a prediction evalu-
ator 1007 which detects when an earlier made prediction
was wrong (i.e., when a misprediction occurred). As
explained earlier, a wrong prediction requires that one or
more instructions that were fetched as a result of the
misprediction will have to be flushed from the stages of the
pipeline 1001 that they are presently occupying, and fetch-
ing will have to start with the correct target instruction.

Detection of a prediction error is based partly on branch
information 1009 that is produced from actual evaluation of
the branch instruction. The evaluated branch outcome infor-
mation 1009 is typically produced in the last stage of the
pipeline 1001 (e.g., in the EXE stage), but in alternative
embodiments the branch information 1009 can be generated
in other stages. For this reason, the stage in which the branch
information 1009 is produced is herein referred to as a
“branch evaluation stage”. It will be recognized that, in the
exemplary embodiment of FIG. 10, the last stage of the
pipeline 1001 is also the branch evaluation stage of the
pipeline 1001. However, the term “branch evaluation stage”
is intended to be broader, covering any stage that produces
this information.

In one aspect, whereas the information for making a
prediction by a conventional predictor is available in the
same pipeline stage in which the branch resides, the infor-
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mation for making predictions by the branch predictor 1005
is stored with the instruction at the end of the branch delay
slots. This means that instead of performing a direct evalu-
ation of prediction accuracy in the branch evaluation stage
of the pipeline 1001 (e.g., the EXE stage), if the end of the
branch delay slots has been loaded into the pipeline by the
time the branch has reached the EXE stage (in some
instances, this may not be the case), the end of the branch
delay slots must be found in the pipeline when the branch
has reached the EXE stage. Information broadcast by the
branch evaluation stage makes it possible for every other
stage to independently decide whether or not it contains the
end of the branch delay slots associated with the evaluated
branch.

Since embodiments consistent with the invention allow
the size of the branch delay slot portion to vary from
instance to instance, this involves searching through the
pipeline to find the stage in which the end of the branch
delay slots is at the time when the branch instruction is in the
branch evaluation stage of the pipeline 1001. The prediction
evaluator 1007 performs this search activity, and for this
purpose receives, for example, address and prediction infor-
mation from each of the pipeline stages.

With respect to the prediction evaluator’s search activity,
the branch instruction includes means for locating the last
BDS instruction, such as an offset field encoded in each
branch instruction, from which the address of the end of the
branch delay slots can be calculated. The addresses of each
stage are then compared to the calculated address of the end
of the branch delay slots. The prediction information of the
pipeline stage for which the address matches the end of
branch delay slots address is evaluated by means of the
branch information 1009 from EXE. If the branch was
predicted incorrectly, the instructions in the pipeline stages
that were wrongly fetched after the end of the branch delay
slots are flushed, and new instructions are fetched starting
with the target instruction identified by evaluation of the
branch instruction.

In alternative embodiments, prediction evaluation can be
a distributed process in which evaluated branch outcomes
are broadcast to every pipeline stage, and every pipeline
stage independently checks whether that stage contains a
prediction for the evaluated branch (i.e., whether that stage
presently holds the branch source for the evaluated branch
instruction). Any stage finding that it holds the branch source
then detects whether it contains an incorrect prediction for
the evaluated branch. If an incorrect prediction is detected,
the stage triggers a flush of all previous stages in the
pipeline. This type of embodiment helps avoid timing issues
similar to those that would be encountered trying to recover
pred_hist from each pipeline stage during a pipeline recov-
ery.

In this exemplary embodiment, each pipeline processing
stage includes branch history storage 1013 (e.g., a set of
registers, shift registers, etc.) for building and maintaining
the branch prediction history associated with each memory
unit of data as that memory unit of data progresses from one
stage of the pipeline to the next. The branch history storage
1013 should be suitable for storing branch histories such as
the branch prediction histories 809 and 811 shown in FIG.
8. The particular size of the branch history in any given
embodiment is a function of the number of cycles, N, that
the branch predictor requires to produce each branch pre-
diction.

It is noted that, since the number of entries that need to be
supplied to a branch history storage 1013 in order to build
a complete branch prediction history depends on the number
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of cycles, N, that the branch predictor 1005 requires to
generate a branch prediction, and since predictions are
produced, at most, one per cycle, FIG. 10 shows dashed lines
connecting the output of the branch predictor 1005 to the
branch history storage 1013 of later stages in the pipeline.
The last stage of the pipeline 1001 (e.g., EXE stage) also
includes commit_hist storage 1015 (e.g., register, shift reg-
ister, etc.) that receives and maintains a history of evaluated
branch outcomes.
It will be appreciated from the figure that the last stage
(EXE) of the pipeline 1001 has ready access to both the
commit_hist and the branch prediction history, so there is no
need to search through the pipeline when this information is
required to recover after a misprediction.
The above-described and other aspects of the pipelined
processor 1000 are, in this exemplary embodiment, con-
trolled by control signals 1011 generated by a controller
1017. For example, the controller 1017 ensures that the
correct address 1019 (e.g., next sequential address or pre-
dicted address or evaluated branch address) is supplied to
the memory 1003. The controller 1017 is further adapted to
carry out the methodology described above in the various
working embodiments and in the more general cases
described with reference to FIGS. 9a and 95. The control-
ler’s operation is based on state information such as, for
example, any one or combination of information represent-
ing the results of prediction evaluation, information gener-
ated by the branch predictor 1005 (e.g., whether a prediction
has been generated during a present cycle), and values
supplied by the commit_hist storage 1015 and branch his-
tory storage 1013 located in the last stage (EXE) of the
pipeline 1001.
In alternative embodiments, the use of a central controller
1017 is avoided by distributing control over the various
pipeline stages. Such distributed control is, like the above-
described embodiment, adapted to carry out the methodol-
ogy described above in the various working embodiments
and in the more general cases described with reference to
FIGS. 94 and 9.
The various embodiments achieve improved performance
over conventional technology. Such improvements include,
but are not limited to:
elimination of a large multiplexing network that would
otherwise be needed to locate and route suitable branch
prediction history information from the stages of the
pipeline to misprediction recovery hardware

improved timing of the pipeline resulting from avoidance
of a large multiplexing network

The invention has been described with reference to par-
ticular embodiments. However, it will be readily apparent to
those skilled in the art that it is possible to embody the
invention in specific forms other than those of the embodi-
ment described above. Accordingly, the described embodi-
ments are merely illustrative and should not be considered
restrictive in any way. The scope of the invention is given by
the appended claims, rather than the preceding description,
and all variations and equivalents which fall within the range
of the claims are intended to be embraced therein.

What is claimed is:

1. A method of controlling a pipelined processor having a
plurality of serially connected processing stages including a
first stage and a branch evaluation stage, wherein one of the
processing stages other than the branch evaluation stage is a
prediction start stage that supplies information for making
branch predictions, wherein the pipelined processor is
operatively coupled to a memory that comprises a plurality
of addressable storage locations, each storage location being
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for storing one unit of data, wherein the pipelined processor
executes instructions from an instruction set that includes a
branch instruction and each branch instruction is associated
with a set of branch delay slots whose size can be greater
than or equal to zero and whose size can be different from
one instance of a branch instruction to another, the method
comprising:

in a first processing cycle, supplying a first branch pre-

diction history as input to a branch predictor that
requires N cycles to produce an output;

in an N processing cycle after the first processing cycle,

loading a memory unit of data into the first stage of the
pipelined processor, wherein the memory unit of data
includes a branch instruction;
as the memory unit of data progresses through the pro-
cessing stages from one cycle to a next, building a set
of' N branch prediction histories that are associated with
the memory unit of data, wherein the N branch predic-
tion histories comprise the first branch prediction his-
tory and N-1 branch prediction histories used to predict
N-1 subsequently fetched memory units of data;

maintaining a history of evaluated branch outcomes of
branch instructions that reached the branch evaluation
stage;

detecting, based on a present evaluation of the branch

instruction included in the memory unit of data and an
earlier predicted outcome, whether a branch mispre-
diction occurred; and

in response to a detection that the branch misprediction

occurred:

selecting values of each one of N recovery histories
from the history of evaluated branch outcomes and
the set of branch prediction histories; and

supplying respective ones of the N selected recovery
histories as input to the branch predictor when each
one of N next memory units of data are loaded into
the prediction start stage of the pipeline,

wherein a last one of the branch delay slots is a branch

source of the associated branch instruction.

2. The method of claim 1, wherein selecting values of
each one of the N recovery histories from the history of
evaluated branch outcomes and the set of branch prediction
histories comprises:

computing a distance that represents how many memory

unit of data boundaries exist between the branch
instruction and the branch source of the branch instruc-
tion; and

selecting values of the N recovery histories from the

history of evaluated branch outcomes and the set of
branch prediction histories that are associated with the
memory unit of data as a function of a set of param-
eters, wherein the set of parameters comprises the
computed distance.

3. The method of claim 2, wherein the set of parameters
comprises a detection of whether the branch source of the
branch instruction is a last instruction in the memory unit of
data.

4. The method of claim 2, wherein the set of parameters
comprises a detection of whether the present evaluation of
the branch instruction is a branch taken outcome.

5. The method of claim 1, wherein N equals 2.

6. An apparatus for controlling a pipelined processor
having a plurality of serially connected processing stages
including a first stage and a branch evaluation stage, wherein
one of the processing stages other than the branch evaluation
stage is a prediction start stage that supplies information for
making branch predictions, wherein the pipelined processor
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is operatively coupled to a memory that comprises a plu-
rality of addressable storage locations, each storage location
being for storing one unit of data, wherein the pipelined
processor executes instructions from an instruction set that
includes a branch instruction and each branch instruction is
associated with a set of branch delay slots whose size can be
greater than or equal to zero and whose size can be different
from one instance of a branch instruction to another, the
apparatus comprising:

a controller configured to cause the pipelined processor to

perform:
in a first processing cycle, supplying a first branch
prediction history as input to a branch predictor that
requires N cycles to produce an output;
in an N* processing cycle after the first processing
cycle, loading a memory unit of data into the first
stage of the pipelined processor, wherein the
memory unit of data includes a branch instruction;
as the memory unit of data progresses through the
processing stages from one cycle to a next, building
a set of N branch prediction histories that are asso-
ciated with the memory unit of data, wherein the N
branch prediction histories comprise the first branch
prediction history and N-1 branch prediction histo-
ries used to predict N-1 subsequently fetched
memory units of data;
maintaining a history of evaluated branch outcomes of
branch instructions that reached the branch evalua-
tion stage;
detecting, based on a present evaluation of the branch
instruction included in the memory unit of data and
an earlier predicted outcome, whether a branch mis-
prediction occurred; and
in response to a detection that the branch misprediction
occurred:
selecting values of each one of N recovery histories
from the history of evaluated branch outcomes and
the set of branch prediction histories; and
supplying respective ones of the N selected recovery
histories as input to the branch predictor when
each one of N next memory units of data are
loaded into the prediction start stage of the pipe-
line,

wherein a last one of the branch delay slots is a branch

source of the associated branch instruction.

7. The apparatus of claim 6, wherein selecting values of
each one of the N recovery histories from the history of
evaluated branch outcomes and the set of branch prediction
histories comprises:

computing a distance that represents how many memory

unit of data boundaries exist between the branch
instruction and the branch source of the branch instruc-
tion; and

selecting values of the N recovery histories from the

history of evaluated branch outcomes and the set of
branch prediction histories that are associated with the
memory unit of data as a function of a set of param-
eters, wherein the set of parameters comprises the
computed distance.

8. The apparatus of claim 7, wherein the set of parameters
comprises a detection of whether the branch source of the
branch instruction is a last instruction in the memory unit of
data.

9. The apparatus of claim 7, wherein the set of parameters
comprises a detection of whether the present evaluation of
the branch instruction is a branch taken outcome.

10. The apparatus of claim 6, wherein N equals 2.
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11. A pipelined processor comprising:
a plurality of serially connected processing stages includ-
ing a first stage and a branch evaluation stage, wherein
one of the processing stages other than the branch
evaluation stage is a prediction start stage that supplies
information for making branch predictions, wherein the
pipelined processor executes instructions from an
instruction set that includes a branch instruction and
each branch instruction is associated with a set of
branch delay slots whose size can be greater than or
equal to zero and whose size can be different from one
instance of a branch instruction to another, wherein a
last one of the branch delay slots is a branch source of
the associated branch instruction;
a memory that comprises a plurality of addressable stor-
age locations, each storage location being for storing
one unit of data, wherein the pipelined processor is
operatively coupled to the memory; and
a controller configured to cause the pipelined processor to
perform:
in a first processing cycle, supplying a first branch
prediction history as input to a branch predictor that
requires N cycles to produce an output;

in an N? processing cycle after the first processing
cycle, loading a memory unit of data into the first
stage of the pipelined processor, wherein the
memory unit of data includes a branch instruction;
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as the memory unit of data progresses through the
processing stages from one cycle to a next, building
a set of N branch prediction histories that are asso-
ciated with the memory unit of data, wherein the N
branch prediction histories comprise the first branch
prediction history and N-1 branch prediction histo-
ries used to predict N-1 subsequently fetched
memory units of data;
maintaining a history of evaluated branch outcomes of
branch instructions that reached the branch evalua-
tion stage;
detecting, based on a present evaluation of the branch
instruction included in the memory unit of data and
an earlier predicted outcome, whether a branch mis-
prediction occurred; and
in response to a detection that the branch misprediction
occurred:
selecting values of each one of N recovery histories
from the history of evaluated branch outcomes and
the set of branch prediction histories; and
supplying respective ones of the N selected recovery
histories as input to the branch predictor when
each one of N next memory units of data are
loaded into the prediction start stage of the pipe-
line.



